COMUNE DI PIOMBINO (PROVINCIA DI LIVORNO)

LOCALITÀ VIGNARCA

PROGETTO PER LA RIQUALIFICAZIONE E L'AMPLIAMENTO DELL'ATTIVITÀ ESISTENTE DI ITTICOLTURA

VALUTAZIONE D'IMPATTO AMBIENTALE

art. 23 Dlgs.152/2006 e art. 52 LRT 10/2010

RICHIEDENTE: IGF Società Agricola s.r.l.

Loc. VIGNARCA, N.24 - 57025 PIOMBINO (LI)

SEDE LEGALE: VIA E. FERMI, N.7 -00012 GUIDONIA MONTECELIO (RM)

P.Iva - C.F.: 01653590537

OGGETTO:

RELAZIONE ACUSTICA

DATA AGOSTO 2023

AGG.

GRUPPO DI LAVORO:

Progettazione:

Arch. Cristina Guerrieri

Geol. Luca Finucci

Arch. Francesca Guerriero

Biol. Paolo De Marzi

Biol. Diogo Nunes Rosado

Dott. Marco Caramelli acustico

Studio d'Impatto Ambientale:

Geol. Simona Petrucci

Valutazione Appropriata: Biol. Piera Lisa Di Felice. R_{5}

Pagina Bianca

INDICE

1 PREMESSA	5
2 NORME TECNICHE DI RIFERIMENTO	8
3 DEFINIZIONI PRINCIPALI	8
4 METODOLOGIA GENERALE E SEMPLIFICAZIONI ADOTTATE	10
5 DEFINIZIONE DEL LIVELLO DI RUMORE ANTE OPERAM	11
5.1 Tecniche di misura adottate	11
5.2 Ricettori e punti di misura e verifica rumore	12
5.3 Catena di misura	
5.4 Risultati misurazioni	13
6 INQUADRAMENTO TERRITORIALE	17
6.1 Dati geografici e geometrici	17
6.2 Fonti di rumore presenti nell'area	17
6.3 Classificazione acustica territorio	18
7 DEFINIZIONE DEL LIVELLO DI RUMORE POST OPERAM	20
7.1 Posizionamento fonti di rumore	20
7.2 Potenza sonora macchine ed apparecchiature	22
7.2.1 Macchine interne ai capannoni di produzione	22
7.2.2 Macchine esterne ai capannoni di produzione	23
7.2.3 Traffico veicolare indotto	23
8 PROPAGAZIONE DEL RUMORE GENERATO	24
9 STIMA DELLE EMISSIONI NUOVE APPARECCHIATURE	26
9.1 Modello geometrico area interessata emissioni acustiche	26
9.2 Parametri di calcolo	26
9.3 Posizione punti di verifica emissioni	26
9.4 Risultati calcoli provvisionali	26
9.4.1 Emissioni diurne e notturne fonti interne ai capannoni	27
9.4.2 Emissioni diurne e notturne fonti esterne ai capannoni	31
9.4.3 Emissioni traffico veicolare indotto	32
9.4.4 Sinottico riassuntivo emissioni	38
10 STIMA VALORI IMMISSIONE POST OPERAM	39
10.1 Immissioni post operam punto 1	39
10.2 Immissioni post operam punto 2	39
10.3 Immissioni post operam punto 3	40
10.4 Immissioni post operam punto 4	40
11 CONSIDERAZIONI IN MERITO AI VALORI DI IMMISSIONE DIFFERENZI	IALI41
12 CONSIDERAZIONI IN MERITO ALLE ATTIVITA' DI cantierizzazione	42

13 MONITORAGGIO EMISSIONI ACUSTICHE	.43
14 CONCLUSIONI	.44

1 PREMESSA

La presente relazione tecnica è stata redatta, al fine di **stimare l'impatto** <u>acustico</u> generato <u>da macchine esterne ed interne</u> da installare nell'ambito del progetto di ampliamento delle strutture destinate all'allevamento a terra di pesce, ai sensi dell'articolo <u>8</u>, <u>commi 1 e 4</u>, <u>della Legge 447/95</u> e dall'articolo <u>12</u> <u>comma 4 della Legge Regionale 89/98</u>.

I suoi contenuti sono quelli indicati nell'allegato A del DGRT 857/13

Qualora dovessero essere installate fonti di rumore diverse od ulteriori rispetto a quanto qui valutato, od il loro posizionamento differisse sostanzialmente da quanto ipotizzato, il presente documento dovrebbe essere aggiornato di conseguenza.

Le figure che seguono, rimandando per i dettagli agli elaborati tecnici progettuali, descrivono il posizionamento delle nuove installazioni:

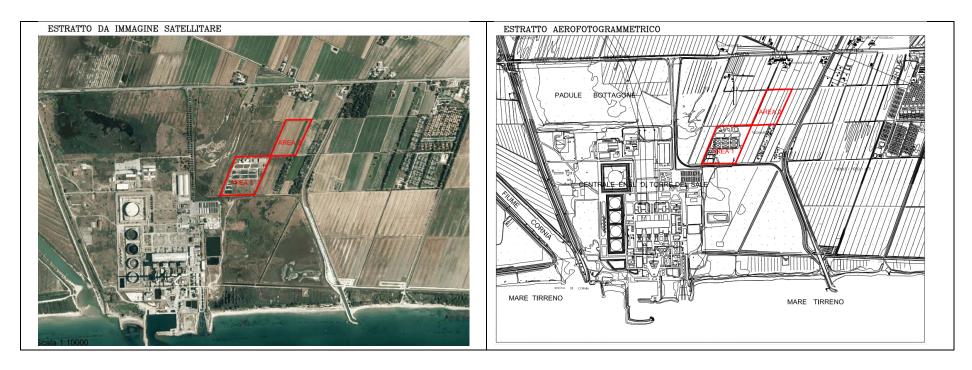


Figura 1: Inquadramento territoriale

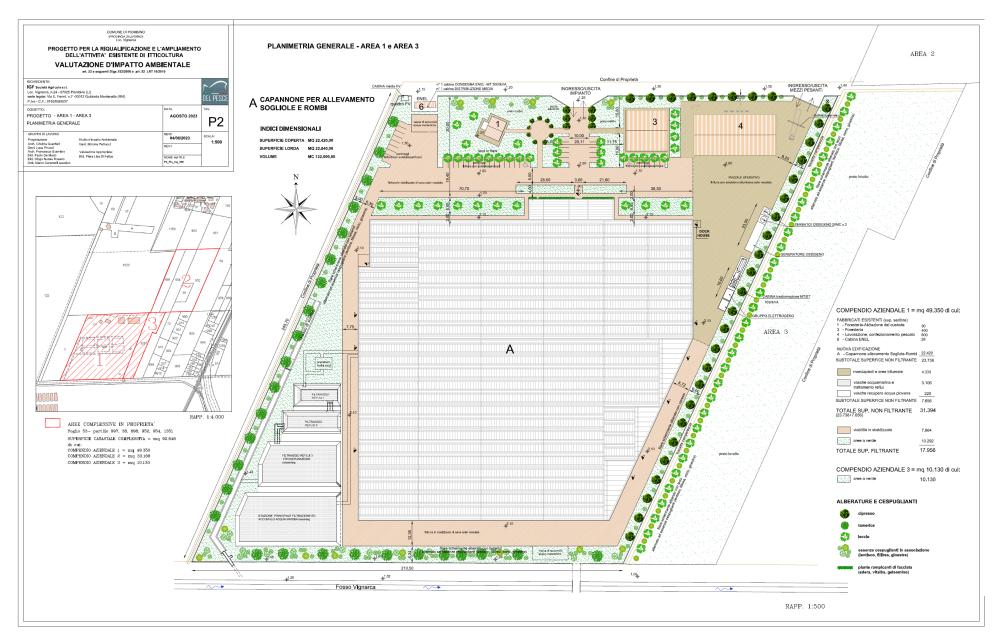


Figura 2: Dettaglio area 1 ed area 3

Figura 3: Dettaglio area 2

2 NORME TECNICHE DI RIFERIMENTO

Le misurazioni di rumore ambientale, le valutazioni tecniche ed i calcoli sviluppati nel presente documento sono stati eseguiti tenendo in considerazione i criteri previsti nelle seguenti normative tecniche (laddove applicabili):

- 1. <u>Decreto Ministeriale 16 marzo 1998</u> "Tecniche di rilevamento e di misurazione dell'inquinamento acustico";
- 2. <u>Norma UNI 11143 1</u> "Metodo per la stima dell'impatto e del clima acustico per tipologia di Sorgenti Parte 1: Generalità":
- 3. <u>Norma UNI 9613 1</u> "Attenuazione sonora nella propagazione all'aperto Parte 1: Calcolo dell'assorbimento atmosferico"
- 4. <u>Norma UNI 9613 2</u> "Attenuazione sonora nella propagazione all'aperto Parte 2: Metodo generale di calcolo";
- 5. <u>UNI/TR 11326:2009 "</u>Valutazione dell'incertezza nelle misurazioni e nei calcoli di acustica Parte 1: Concetti generali
- 6. <u>ISO 3744 (1994)</u> "Acoustics Determination of sound power levels of noise sources using sound pressure Engineering method in an essentially free field over a reflecting plane".

3 DEFINIZIONI PRINCIPALI

Norma UNI 11143 - 1

Area di influenza: Porzione o porzioni di territorio in cui la realizzazione di una nuova opera, o di modifiche a un'opera esistente, potrebbe determinare una variazione significativa dei livelli di rumore ambientale, rispetto alla situazione ante operam.

Clima acustico: Andamento spaziale e temporale del rumore presente in un determinato sito.

Impatto acustico: Variazione del clima acustico indotto dalle nuove sorgenti sonore.

livello di emissione sonora: Livello di pressione sonora ponderato A rilevabile in una postazione in relazione al contributo di una specifica sorgente sonora.

livello di immissione sonora: Livello di pressione sonora ponderato A rilevabile in una postazione in relazione al contributo di tutte le sorgenti sonore acusticamente influenti.

punto di ricezione: Punto di misura in corrispondenza di un ricettore ritenuto significativo per valutare il clima acustico o gli effetti acustici in un'area.

Sorgente analoga: Sorgente sonora con le stesse caratteristiche della nuova opera per potenzialità, dimensioni, tipologia e tecnologia costruttiva.

Norma UNI 9613 - 2

Livello continuo equivalente di pressione sonora ponderato A, L_{AT}: Livello di pressione sonora, in decibel, definito dall'equazione (1):

$$L_{AT} = 10 \lg \left\{ \left[(1/T) \int_0^T \rho_A^2(t) dt \right] / \rho_0^2 \right\} dB$$

dove:

 $p_A(t)$: è la pressione sonora istantanea ponderata A, in pascal;

 $\mathbf{p_0}$: è la pressione sonora di riferimento (= 20 × 10⁻⁶ Pa);

T: è un dato intervallo di tempo, in secondi.

La ponderazione A della frequenza è quella specificata nella IEC 651 per i misuratori di livello sonoro.

livello continuo equivalente di pressione sonora per banda di ottava nel senso del vento, L_{fT(DW)}: Livello di pressione definito dall'equazione:

$$L_{fT}(DW) = 10 \lg \left\{ \left[(1/T) \int_0^T \rho_f^2(t) dt \right] / \rho_0^2 \right\} dB$$

dove:

 $p_f(t)$: è la pressione sonora istantanea nel senso del vento per banda di ottava, in pascal, e l'indice f rappresenta la frequenza centrale di un filtro per bande di ottava.

UNI/TR 11326:2009

misurando: Grandezza che s'intende sottoporre a misurazione.

risultato di misura: Insieme di valori della grandezza attribuiti ad un misurando congiuntamente a ogni altra informazione pertinente disponibile.

incertezza (di misura): Parametro, associato al risultato di una misurazione, che caratterizza la dispersione dei valori ragionevolmente attribuibili al misurando.

4 METODOLOGIA GENERALE E SEMPLIFICAZIONI ADOTTATE

Le procedure adottate per la **stima** del clima acustico *post operam*, e della conseguente definizione dei livelli di emissione ed immissione sonora attesi, sono le seguenti:

- 1. Definizione del livello del rumore residuo esistente (*caratterizzazione acustica ante operam*), facendo riferimento al altre valutazioni effettuate in occasioni di studi acustici precedenti, campagne di misura specifiche o mediante valutazioni di natura teorica;
- 2. Definizione di un modello geometrico e geografico adeguato dell'area interessata dal fenomeno acustico;
- Definizione delle caratteristiche delle fonti di emissione sonora future (potenza sonora macchine ed apparecchiature di futura installazione);
- 4. Scelta dei parametri meteo climatici adeguati per descrivere la propagazione del rumore nel periodo di realizzazione dell'opera;
- 5. Esecuzione della routine di calcolo.

L'output di tale processo è rappresentato da tabelle che indicano il livello di pressione sonora previsto nello spazio (in specifici punti), così generato dal funzinonamento dell'impianto di allevamento a terra pesci.

Lo standard utilizzato dal software previsionale per il calcolo del rumore generato dalle nuove sorgenti di rumore è la norma $\underline{\text{Norma UNI 9613}} - \underline{2}$.

Per lo sviluppo dei calcoli necessari, sono state formulate ipotesi semplificative, sempre giustificate dalle normative tecniche citate nel capitolo. Esse saranno evidenziate ogni qualvolta si renda necessario la loro introduzione.

Pagina 10 di 44

5 DEFINIZIONE DEL LIVELLO DI RUMORE ANTE OPERAM

5.1 Tecniche di misura adottate

Per la misura del livello di rumorosità nei punti di verifica prescelti, si è adottata la tecnica del "micro campionamento", così come definita nel § 6.4 della norma UNI TR 11326:2009.

Nei punti di misura prescelti si è proceduto alla realizzazione di alcuni campionamenti, tra loro statisticamente indipendenti, di durata opportuna (ti). La durata prescelta della misura è pari a 10', dato che il rumore analizzato proviene da impianti industriali a ciclo continuo, che presentano emissioni pressoché costanti nel tempo. Campionamenti di maggiore lunghezza, eventualmente non presidiati, aumenterebbero la possibilità che gli stessi siano inquinati da eventi anomali e fenomeni acustici non legati alle fonti indagate.

Il livello equivalente è stato calcolato con la seguente formula:

$$L_{\text{Aeq,T}} = 10 \times \text{Ig} \left[\frac{1}{TM} \sum_{i=1}^{M} t_i \times 10^{(L_{\text{Aeq,ti}}/10)} \right]$$

Dove:

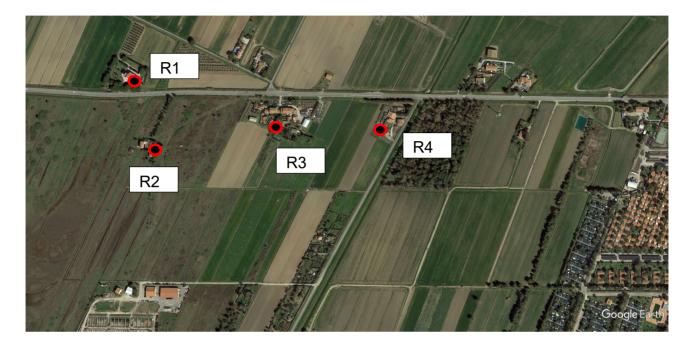
LAeqTi = Livello equivalente dell'i-esima misura ti = durata dell'i-esima misura TM = somma dei ti (totale tempo di misura)

L'incertezza sul valore di LAeq,T, definito con l'equazione (1), è stato calcolato con metodi statistici (incertezza di Categoria A).

Si è effettuato, pertanto, al calcolo della varianza, facendo ricorso all'equazione seguente (§ 4.6 della norma UNI TR 11326:2009).

$$s^{2}(q_{k}) = \frac{1}{n-1} \sum_{k=1}^{n} (q_{k} - \overline{q})^{2}$$

Equazione 1: Calcolo incertezza sul livello equivalente - incertezza di categoria A


La radice quadrata della varianza (lo scarto tipo o deviazione standard) rappresenta l'incertezza tipo di categoria A.

Moltiplicando l'incertezza tipo ottenuta per l'opportuno "fattore di copertura" si ottiene la cosiddetta "incertezza estesa U", ovvero "La miglior stima del valore attribuibile al misurando Y è y e che ci si aspetta che l'intervallo di valori da y - U a y + U comprenda una gran parte della distribuzione dei valori ragionevolmente attribuibili ad Y." (§ 4.10 della norma UNI TR 11326:2009)

5.2 Ricettori e punti di misura e verifica rumore

Di seguito, si individuano i ricettori potenzialmente disturbati dalle attività future di allevamento pesce a terra:

La foto aerea che segue, indica le postazioni in cui sono state effettuate le misure per la determinazione del livello di rumore resuduio, ritenute rappresentative del clima acustico ante operam:

In base al posizionamento dei ricettori, appare evidente che il punto P1 è rappresentativo del livello di rumore resuduo attribuibile ai ricettori R2, R3 ed R4.

Il punto di misura P2 è rappresentativo del ricettore R1.

5.3 Catena di misura

Le misurazioni, condotte secondo le norme internazionali universalmente accettate da personale qualificato ed esperto, sono state effettuate con fonometro e catena di misura di classe I, nello specifico:

- Fonometro analizzatore Norsonic 140 numero di serie 1403248
- Microfono da campo libero Norsonic 1225 numero di serie 91963
- Calibratore Norsonic

La catena di misura è stata sottoposta a calibrazione prima e dopo ciascuna campagna di misura, in nessun caso si sono riscontrati scostamenti superiori a 0.5 dB. L'intera catena di misura è stata sottoposta a taratura, presso centro SIT, nel Marzo 2022.

Le misure sono state effettuate nel rispetto dei criteri tecnici previsti dal D.M. 16/03/1998, ai quali si rimanda per i dettagli.

5.4 Risultati misurazioni

Le tabelle che seguono, riportano le misurazioni svolte:

Periodo diurno

	ID Misura	Data	Orario Inizio	Durata	Leq	Penalizzaz.
				min.	dB (A)	
	1	22/03/2023	09:10	10	43,2	No
Jiumo	2	22/03/2023	09:55	10	47,4	No
Punto misura 1 - Diurno	3	22/03/2023	16:05	10	46,3	No
Punto	4	4 24/05/2023 1		10	44,8	No
	5	24/05/2023	15:50	10	47,9	No
			Valore	medio	44,4	
		Incert	ezza tipo categ	oria A	1,9	
	Incerte	zza estesa con li	vello di fiducia	del 95%	3,8	

	ID Misura	Data	Orario Inizio	Durata	Leq	Penalizzaz.
	ID Wiisura	Data	Orario illizio	min.	dB (A)	r enanzzaz.
	1	22/03/2023	09:30	10	53,2	No
Jiumo	2	22/03/2023	10:13	10	56,9	No
Punto misura 2 - Diurno	3	3 22/03/2023		10	54,2	No
Punto	4 24/05/2023 5 24/05/2023		11:35	10	57,2	No
			15:20	10	56,2	No
			Valore	medio	53,5	
		Incert	ezza tipo categ	oria A	1,8	
	Incerte	zza estesa con li	vello di fiducia	del 95%	3,4	

Periodo notturno

	ID Misura	Data	Orario Inizio	Durata	Leq	Penalizzaz.	
	ID Wiisura	Data	Orario IIIIZIO	min.	dB (A)	renanzzaz.	
	1	22/03/2023	22:45	10	38,4	No	
ottumo	2	22/03/2023	23:35	10	35,7	No	
Punto misura 1 - Notturno	3	23/03/2023	00:45	10	34,3	No	
Punto	4	4 25/05/2023		10	37,0	No	
	5	24/05/2023	01:10	10	38,2	No	
			Valore	medio	35,4		
		Incert	ezza tipo categ	oria A	1,7		
	Incerte	zza estesa con li	vello di fiducia	del 95%	3,4		

	ID Misura	Data	Orario Inizio	Durata min.	Leq dB (A)	Penalizzaz.
	1	22/03/2023	22:30	10	43,0	No
Siurno	2	22/03/2023	23:10	10	46,9	No
Punto misura 2 - Diurno	3	23/03/2023	/2023 00:15 10 45,8		No	
Punto	4	25/05/2023 00:10		10	47,2	No
	5	25/05/2023	01:30	10	44,3	No
			Valore	medio	42,8	
		Incert	ezza tipo categ	oria A	1,8	
	Incerte	zza estesa con li	vello di fiducia	del 95%	3,5	

Non sono state riscontrate componenti impulsive, tonali od a bassa frequenza. Pertanto il dato misurato non deve essere corretto con specifiche penalizzazioni.

E' necessario evidenziare e sottolineare che i dati ottenuti dalla breve campagna di monitoraggio sono significativi per il periodo in cui sono state effettuate le misure. Come già detto, infatti, il livello di rumore presente nei luoghi è fondamentalmente determinato dal traffico veicolare sulle arterie locali.

Non è difficile immaginare che nei periodi di maggiore afflusso turistico (ad esempio, nella stagione estiva, nei weekend ecc.), detto flusso subisca incrementi notevoli.

Di conseguenza, risulterà incrementato il livello di rumore residuo, eventualmente riscontrato in tali periodi.

I valori riportati in tabelle, comunque, rappresentano una condizione cautelativa, visto che sono, con tutta probabilità, inferiori di quelli riscontrabili nelle condizioni sopra descritte di maggior traffico.

6 INQUADRAMENTO TERRITORIALE

6.1 Dati geografici e geometrici

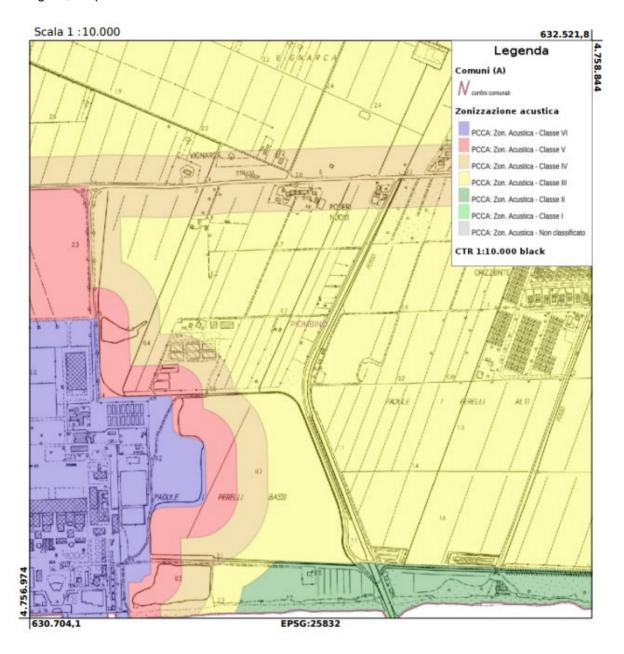
L'orografia del sito si presenta piatta, e non sono presenti elementi naturali od artificiali tali da rappresentare uno schermo alla propagazione in campo libero dell'onda sonora, nel senso inteso dal punto **7.4 della norma UNI EN 9613-2:2006**.

Il terreno, nelle varie direzioni di propagazione dell'onda sonora, si può classificare, quasi in toto come "terreno assorbente", ovvero con un coefficiente G = 0.

Nella modellazione, sarà considerato l'effetto barriera determinato dai capannoni/edifici che l'onda sonora emessa delle installazioni esterne incontra nel proprio percorso dal punto di emissioen verso i ricettori individuati. Inoltre, sarà considerata la riflessione dell'onda sonora sulla facciata dei ricettori individuati.

6.2 Fonti di rumore presenti nell'area

La zona è scarsamente antropizzata, e sono presenti abitazioni o gruppi di abitazioni rurali sperse. Non sono presenti attività produttive rumorose (la limitrofa centrale elettrica ENEL è, al momento, fuori servizio).


Pertanto, la princilale fonte di rumore presente è da considerarsi la viabilità locale, con particolare rilevanza la SP40 "Geodetica", arteria molto importante che collega Piombino all'entroterra e consente di raggiungere le installazioni turistche e le spiagge presenti lungo la costa. Ovviamente, le emissioni acustiche generate dalla rete viaria locale variano al variare del flusso veicolare che le attraverse e, quindi, sia su base oraria, sia su base stagionale.

Altre fonti di rumore che, in alcuni periodi dell'anno, possono essere rilevanti sono rappresentate dalle lavorazioni agricole svolte nei campi coltivati circostanti i ricettori individuati.

6.3 Classificazione acustica territorio

Di seguito, si riporta un estratto del PCCA del Comune di Piombino:

Si nota che l'impianto di allevamento pesci, nella sua configurazione futura, si trova parzialmente in classe IV e, per la maggior parte, in classe III.

I ricettori R1, R2 ed R4 si trovano in classe IV oltre che, presumibilmente, nella fascia di pertineneza della SP40 (anche se non riportato in figura).

Il ricettore R2 si trova in classe III. I limiti applicabili, pertanto, saranno i seguenti:

VALORI LIMITE (dB(A)) - D.P.C.M. 14/11/97

Periodi di riferimento:

Trd: Tr diumo (dalle ore 6 alle ore 22); Trn: Tr notturno (dalle ore 22 alle ore 6)

CLASSI		LIMITI											
	EMIS	SIONE		ASSOLUTI DI IMMISSIONE		ITA'	IMMISSIONE DIFFERENZIALE						
	Trd	Trn	Trd	Trn	Trd	Trn	Trd	Tm					
I	45	35	50	40	47	37	5	3					
II	50	40	55	45	52	42	5	3					
III	55	45	60	50	57	47	5	3					
IV	60	50	65	55	62	52	5	3					
V	65	55	70	60	67	57	5	3					
VI	65	65	70	70	70	70	non ap	plicabile					

7 DEFINIZIONE DEL LIVELLO DI RUMORE POST OPERAM

7.1 Posizionamento fonti di rumore

Il progetto consiste nell'ampliamento delle esistenti attività di allevamento ittico, mediante costruzione di capannoni atti ad ospitare le vasche di allevamento, nonché installazione delle necessarie apparecchiature di supporto.

Di seguito, si riportano delle foto aeree che evidenziano il posizionamento dei capannoni (modellizzati come fonti di emissione aerale) e delle fonti di emissione esterne (modellizzate come fonti di emissione puntuali):

- 1 lavareti
- 2 compressore (dentro fabbricato)
- 3 macchine per frigorifero macchine per produzione ghiaccio
- 4 gruppo elettrogeno (dentro cabina Enel)

Figura 4: Posizionamento fonti di rumore esterne ed interne attuale

- 1 lavareti
- 2 compressore e macchine per il frigorifero (dentro fabbricato C)
- 3 macchine per frigorifero macchine per produzione ghiaccio
- 4 gruppo elettrogeno (dentro cabina Enel)
- 5 macchine per produzione ghiaccio (dentro fabbricato C)
- 6 generatore di corrente
- 7 generatore di ossigeno

Figura 5: Posizionamento fonti di rumore esterne ed interne assetto futuro

7.2 Potenza sonora macchine ed apparecchiature

Nei paragrafi che seguono, si riportano le potenze sonore delle macchine e delle apparecchiature rumorose che saranno utilizzate nel nuovo assetto impiantistico.

I dati qui presentati sono stati ricavati da schede tecniche delle macchine o ricorrendo a dati di letteratura, reperibili su database o pubblicazioni specializzate.

Si ignorano tutte le fonti di scarsa rilevanza, che non hanno incidenza sulle emissioni acustiche (come, ad esempio, le apparecchiature elettrche a servizio dell'impianto fotovoltaico, installato sulla copertura dei capannoni).

7.2.1 Macchine interne ai capannoni di produzione

Internamente ai capannoni che, cautelativamente si considerernno tamponati con panelli fonoisolanti con potere isolante R_W pari a 30 dB (tale valore risulta estremamente basso, per considerare la condizione più sfavorevole), saranno attive varie apparecchiature di supporto alla vita dei pesci.

Rimandando ai dettagli progettuali, si osserva che all'interno dei capannoni saranno ospitate tutte le apparecchiature necessarie al mantenimento della corretta temperatura dell'acqua e dell'ambiente interno stesso, come le centrali termiche.

Dobbiamo considerare che livelli di rumore troppo elevati non sono compatibili con la vita dei pesci stessi, pertanto saranno utilizzate macchine ed attrezzature molto silenziose, che non avranno praticamente impatto su ricettori esterni.

In ogni caso, in termini del tutto cautelativi, i capannoni saranno considerati come fonti di rumore aerali. L'area di emissione sarà rappresentata dalle varie facciate del capannone stesso.

Il livello di potenza sonora emessa da ciascuna superficie sarà calcolato dal software in base:

- 1. Alla superficie della parete stessa;
- 2. Al livello di pressione sonora interno, dato dalla somma della pressione sonora di tutte le macchine presenti nel capannone (posto, in maniera estremamente cautelativa, pari ad 85 dB):

$$L_{p,equivalente} = \sum_{i=1}^{n} 10^{0.1L_{p,i}} = 85 \ dB$$

3. Potere fonoisolante parete (Transmission Loss) pari a 30 dB.

Le fonti interne saranno attive sia nel periodo diurno, sia in quello notturno.

Tra le fonti interne, modellate come descritto, si inserisce anche il gruppo elettrogeno attualmente presente (che presenta una potenza sonora pari a 95 dB), ovviamente in funzione esclusivamente in caso di assenza di tensione di rete.

7.2.2 Macchine esterne ai capannoni di produzione

	Livello di Potenza	Funzionamento	Periodo		
Macchina / Attrezzatura	Sonora	giornaliero			
	dB	Ore			
Macchine lavareti	85	5	Diurno		
(n.2)	00				
Gruppo macchine frigo	100	12	Diurno/Notturno		
Ossigenatore	75	10	Diurno/Notturno		
Nuovi gruppi elettogene	75	2	Diurno/Notturno		

Tabella 1: Potenza sonora macchine ed attrezzature esterne

Come si nota dai dati riportati in tabella, tutte le macchine estere, tranne le lavareti, hanno un funzionamento on/off (ossia, non sono in funzione continuamente), tuttavia il loro funzionamento interessa anche il periodo notturno,

7.2.3 Traffico veicolare indotto

In consierazione della capacità produttiva del nuovo impianto, e quindi le necessità di approvvigionamento materiali per allevamento e speddizione prodotto, si considera un traffico veicolare indotto pari a 10 veicoli/ora.

Si assume una velocità massima dei veicoli pesanti pari a 50 km/h.

8 PROPAGAZIONE DEL RUMORE GENERATO

Lo scopo fondamentale di questa valutazione previsionale è quello di stabilire l'influenza del rumore generato dalle variazioni proposte al ciclo di produzione, e di valutare come tale influenza vada a modificare il clima acustico presente presso i ricettori individuati.

Per ottenere questo scopo si devono tenere di conto sia delle caratteristiche della fonte di emissione, sia quelle dei luoghi ove il rumore si propaga.

La propagazione delle onde sonore è fortemente influenzata dai parametri fisici atmosferici (temperatura, umidità, pressione, velocità e direzione del vento).

Si utilizzerà, mediante l'apposito software di previsione acustica IMMI 6.3 ed a scopo cautelativo, l'equazione che fornisce la pressione sonora in bande di terze di ottava in <u>direzione del vento</u>, ovvero nel <u>caso peggiore</u> <u>possibile</u> (UNI 9613 – 2 § 9):

$$L_{f_T} = L_W + D_C - A$$

Dove:

L_W è il livello di potenza sonora per bande di ottava, in decibel, prodotto dalla sorgente sonora puntiforme e calcolato rispetto alla potenza sonora di riferimento di 1 pW;

 \mathbf{Dc} è la correzione di direttività, in decibel, che descrive l'entità della deviazione in una data direzione del livello continuo equivalente di pressione sonora della sorgente puntiforme, rispetto al livello di una sorgente sonora puntiforme omnidirezionale che emette una potenza sonora Lw; \mathbf{Dc} è uguale all'indice \mathbf{Dl} della sorgente sonora puntiforme, più un indice $\mathbf{D\Omega}$ che tiene conto della propagazione sonora entro angoli solidi di ampiezza minore di 4π sr. Per una sorgente sonora puntiforme omnidirezionale irradiante in spazio libero, $\mathbf{Dc} = \mathbf{0}$ dB;

A è l'attenuazione per bande di ottava, in decibel, che si verifica durante la propagazione dalla sorgente sonora puntiforme al ricettore.

L'attenuazione si calcola mediante la seguente formula:

$$A = A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc}$$

dove:

Adiv è l'attenuazione dovuto alla divergenza geometrica;

Aatm è l'attenuazione dovuto all'assorbimento atmosferico;

A_{gr} è l'attenuazione dovuta all'effetto suolo;

Abar è l'attenuazione dovuta a ostacoli;

A_{misc} è l'attenuazione dovuta ad altri effetti eterogenei (esempio, presenza di impianti industriali).

Si utilizzerà il livello continuo equivalente di pressione sonora ponderato A nel senso del vento, sommando le medie quadratiche temporali delle pressioni sonore quadratiche medie temporali che vi contribuiscono, calcolate con le equazioni sopra viste, per ciascuna delle sorgenti sonore puntiformi, per ciascuna delle loro sorgenti immagine e per ciascuna banda di ottava, come indicato dall'equazione:

$$L_{AT}(DW) = 10 lg \left\{ \sum_{j=1}^{n} \left[\sum_{j=1}^{8} 10^{0,1[L_{ff}(j) + A_{f}(j)]} \right] \right\} dB$$

dove:

n è il numero di contributi (sorgenti e percorsi);

j è un indice che indica le otto frequenze centrali di banda di ottava da 63 Hz a 8 kHz;

Af rappresenta la ponderazione A normalizzata (vedere IEC 651).

I calcoli saranno effettuati ponendo gli opportuni dati di input nel sistema, desumibili dalle informazioni riportate nei capitoli precedenti.

Per una più semplice comprensione degli indici introdotti e dei concetti fisici da essi sottesi, si rimanda alla norma UNI 9613 – 2.

9 STIMA DELLE EMISSIONI NUOVE APPARECCHIATURE

9.1 Modello geometrico area interessata emissioni acustiche

Come descritto in precedenza, a favore della sicurezza, si ignorano sia la morfologia della zona (caratterizzata da collinette), sia la presenza di alberature che potrebbero rappresentare uno schermo alla propagazione dell'onda sonora, tra le fonti di emissione ed i punti ricettori.

9.2 Parametri di calcolo

I parametri di calcolo utilizzati sono riassunti nella tabella che segue:

Paramet	Parametri principali di calcolo*									
Traffico pesante indotto	10	Veicoli/ ora								
Potenza sonora apparecchiature rumorose	ecchiature rumorose Vedi specifici paragrafi									
Vento	5	m/s								
Temperatura	30	°C								
Umidità	90	%								

^{*}I parametri meteo prescelti sono quelli che comportano una minore assorbimento atmosferico dell'onda sonora.

Si considerano, in termini assolutamente cautelativi e che non trovano effettivo riscontro nella pratica, tutte le fonti di rumore contemporaneamente funzionati.

9.3 Posizione punti di verifica emissioni

Nel paragrafo 5.2 della presente relazione, sono riportati i 4 ricettori più prossimi alle nuove installazione. Si nota che gli stessi sono rappresentati da abitazioni rurali, eventualmente con scopi ricettivi, poste a notevole distanza dalle nuove installazioni stesse.

Non sono, ovvimente, presenti ricettori sensibili, quali scuole, ospedali ecc.

9.4 Risultati calcoli provvisionali

Nei paragrafi che seguono, si riportano gli output dei calcoli previsionali, effettuati nelle ipotesi sopra rammentante.

9.4.1 Emissioni diurne e notturne fonti interne ai capannoni

Calcolo del singolo punto	Punto ricevitore: R1		Variante
			emissione: Giorno
	X = 501,61	Y = 472,50	Z = 1,50
	Variante: Variante 0		

Tipo elem.	Sorgente puntiforme(ISO	9613)												
Previsione rumore secondo ISO 9613 LfT = Lw + Dc - Adiv - Aatm - Agr - Afol - Ahous -														
									Aba	ar - Cmet				
Elemento	Etichetta	Lw	Dc	Distanz	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT tot
				а										
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)				
EZQi001	Gruppo Elettrogeno	65,0	3,0	261,1	59,3	0,6	4,6	0,0	0,0	0,0	0,0		3,5	
														3.5

Tipo elem. Previsione	Sorgente areiform rumore secondo ISO 9613	ie (130 9013)							LfT	= Lw + D	c - Adiv -	Aatm - A	Agr - Afol	- Ahous
				, ,		,			, , , , , , , , , , , , , , , , , , , ,					ar - Cme
Elemento	Etichetta	Lw	Dc	Distanz a	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT to
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)				
FLQi001	Fab. A - lato 1													
	Triangolo 1													
	triangolo parz. 1	74,1	3,0		60,5	0,7	4,6	0,0		0,0	0,0		11,3	
	triangolo parz. 2	71,1	3,0		60,5	0,7	4,7	0,0	0,0	0,0	0,0		8,3	
	triangolo parz. 3	71,1	3,0	296,2	60,4	0,7	4,7	0,0	0,0	0,0	0,0		8,3	
	Triangolo 2													
	triangolo parz. 1	74,1	3,0		60,6	0,7	4,6	0,0	0,0	0,0	0,0		11,3	
	triangolo parz. 2	71,1	3,0		60,4	0,7	4,5	0,0	0,0	0,0	0,0		8,5	
	triangolo parz. 3	71,1	3,0	297,5	60,5	0,7	4,5	0,0	0,0	0,0	0,0		8,5	
FLQi003	Fab. A - Lato 2													
	Triangolo 1	71,5	3,0	334,1	61,5	0,7	4,6	0,0	0,0	0,0	0,0		7,6	
	Triangolo 2	71,5	3,0	319,6	61,1	0,7	4,5	0,0	0,0	0,0	0,0		8,1	
FLQi005	Fab. A - Lato 3													
	Triangolo 1	74,3	3,0		62,9	0,9	4,7	0,0	0,0	0,0	0,0		8,9	
	Triangolo 2	74,3	3,0	370,6	62,4	0,8	4,6	0,0	0,0	0,0	0,0		9,5	
FLQi008	Fab.A - Lato 4													
	Triangolo 1	75,6	3,0		63,5	0,9	4,7	0,0	0,0	0,0	0,0		9,6	
	Triangolo 2	75,6	3,0		63,4	0,9	4,6	0,0	0,0	0,0	0,0		9,7	
FLQi009	Fab. A - Lato 5	65,9	3,0	348,7	61,8	0,8	4,7	0,0	0,0	0,0	0,0		1,6	
FLQi011	Fab.B - Lato 1													
	Triangolo 1	74,4	3,0		61,1	0,7	4,6	0,0	0,0	0,0	0,0		11,1	
	Triangolo 2	74,5	3,0	291,8	60,3	0,7	4,5	0,0	0,0	0,0	0,0		12,0	
FLQi012	Fab Lato 3													
	Triangolo 1	78,5	3,0		60,7	0,7	4,6	0,0	0,0	0,0	0,0		15,5	
	Triangolo 2	78,5	3,0	326,5	61,3	0,7	4,5	0,0	0,0	0,0	0,0		15,0	
FLQi014	Fab. B - Lato 2													
	Triangolo 1	79,3	3,0	345,0	61,7	0,8	4,6	0,0	0,0	0,0	0,0		15,1	
	Triangolo 2	79,3	3,0	344,3	61,7	0,8	4,5	0,0	0,0	0,0	0,0		15,2	
FLQi015	Fab. B - Lato 4													
	Triangolo 1	75,3	3,0	267,2	59,5	0,6	4,6	0,0	0,0	0,0	0,0		13,6	
	Triangolo 2	75,3	3,0	274,0	59,7	0,6	4,5	0,0	0,0	0,0	0,0		13,5	
FLQi016	Fab. C - Lato 1													
	Triangolo 1	83,1	3,0		60,8	0,7	4,6	0,0	0,0	0,0	0,0		20,0	
	Triangolo 2	83,1	3,0	288,2	60,2	0,6	4,5	0,0	0,0	0,0	0,0		20,7	
FLQi018	Fab. C - Lato 2													
	Triangolo 1	81,6	3,0	332,7	61,4	0,7	4,6	0,0	0,0	0,0	0,0		17,8	
	Triangolo 2	81,6	3,0	331,1	61,4	0,7	4,5	0,0	0,0	0,0	0,0		17,9	
FLQi021	Fab. C - Lato 3													
	Triangolo 1	83,2	3,0	313,6	60,9	0,7	4,6	0,0	0,0	0,0	0,0		20,0	
	Triangolo 2	83,2	3,0	292,8	60,3	0,7	4,5	0,0	0,0	0,0	0,0		20,7	
FLQi023	Fab, C - Lato 4													
	Triangolo 1	82,1	3,0		59,7	0,6	4,6	0,0		0,0	0,0		20,3	
	Triangolo 2	82,1	3,0	269,1	59,6	0,6	4,5	0,0	0,0	0,0	0.0		20,5	

Tabella 2: Emissioni apparecchiature interne – periodo diurno e notturno - Ricettore 1

Calcolo del singolo punto	Punto ricevitore: R2		Variante
	X = 480.71	V 000 50	emissione: Giorno
	X = 480,71 Variante: Variante 0	Y = 603,52	Z = 1,50

Tipo elem.	Sorgente puntiforme(ISO 9613)												
Previsione r	rumore secondo ISO 9613	•							LfT	= Lw + D	c - Adiv -	Aatm - A	gr - Afol	- Ahous -
													Aba	ar - Cme
Elemento	Etichetta	Lw	Dc	Distanz	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT tot
				а			_							
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)				
EZQi001	Gruppo Elettrogeno	65,0	3,0	390,4	62,8	0,9	4,7	0,0	0,0	0,0	0,0		-0,4	
					•									-0.4

Tipo elem.	Sorgente areifo rumore secondo ISO 9613	iiie (ISO 9613)							LET	_ 1 D	ر الم	A = 4===	Agr - Afol -	A b a a
Previsione	rumore secondo ISO 9613								LTI	= LW + L	c - Adiv -	Aatm - A		- Anous ar - Cme
Elemento	Etichetta	Lw	Dc	Distanz a	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT to
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)
FLQi001	Fab. A - lato 1												, , , ,	` '
	Triangolo 1	77,1	3,0	428,7	63,6	1,0	4,7	0,0	0,0	0,0	0,0		10,8	
	Triangolo 2	77,1	3,0	427,3	63,6	1,0	4,6	0,0	0,0	0,0	0,0		10,9	
FLQi003	Fab. A - Lato 2													
	Triangolo 1	71,5	3,0	466,3	64,4	1,0	4,7	0,0	0,0	0,0	0,0		4,4	
	Triangolo 2	71,5	3,0	451,8	64,1	1,0	4,6	0,0	0,0	0,0	0,0		4,8	
FLQi005	Fab. A - Lato 3													
	Triangolo 1	74,3	3,0	524,9	65,4	1,2	4,7	0,0	0,0	0,0	0,0		6,1	
	Triangolo 2	74,3	3,0	503,3	65,0	1,1	4,6	0,0	0,0	0,0	0,0		6,5	
FLQi008	Fab.A - Lato 4	·							•					
	Triangolo 1	75,6	3,0	550,1	65,8	1,2	4,7	0,0	0,0	0,0	0,0		6,9	
	Triangolo 2	75,6	3,0	547,7	65,8	1,2	4,6	0,0	0,0	0,0	0,0		7,0	
FLQi009	Fab. A - Lato 5	65,9	3,0	474,1	64,5	1,1	4,7	0,0	0,0	0,0	0,0		-1,4	
FLQi011	Fab.B - Lato 1	·							•					
	Triangolo 1	74.4	3,0	401,3	63.1	0,9	4.7	0.0	0.0	0,0	0,0		8.8	
	Triangolo 2	74,5	3.0	378,9	62,6	0.8	4.6	0.0	0.0	0.0	0.0		9.5	
FLQi012	Fab Lato 3	, ,	-,-	,-	. , .	.,.	, ,		-,-	-,-	.,.			
	Triangolo 1	78.5	3,0	417,8	63,4	0,9	4,7	0,0	0,0	0,0	0,0		12,5	
	Triangolo 2	78,5	3.0		63,8	1,0	4,6	0.0		0.0	0.0		12,2	
FLQi014	Fab. B - Lato 2		-,-	, -	, .	, .	, ,		-,-	-,-	.,.			
	Triangolo 1	79,3	3,0	441,5	63,9	1,0	4,7	0,0	0,0	0,0	0,0		12.7	
	Triangolo 2	79,3	3,0	432,2	63,7	1,0	4,6	0.0		0.0	0.0		13,0	
FLQi015	Fab. B - Lato 4		-,-	. ,	,	, .	, ,		-,-	-,-	.,.			
	Triangolo 1	75,3	3,0	370,0	62,4	0,8	4,6	0.0	0.0	0,0	0,0		10.5	
	Triangolo 2	75,3	3.0		62.7	0.9	4.6	0.0	0.0	0.0	0.0		10,2	
FLQi016	Fab. C - Lato 1		- , -	,	. ,	.,.	, .	- , -	-,-	- , -	.,.			
	Triangolo 1	83,1	3,0	378,4	62,6	0,8	4,7	0,0	0,0	0,0	0,0		18.0	
	Triangolo 2	83,1	3,0	361,1	62,1	0,8	4,6	0,0		0.0	0,0		18,6	
FLQi018	Fab. C - Lato 2	,	-,-	,	, .	-,-	.,-	-,-	-,-	-,-	-,-		,.	
	Triangolo 1	81.6	3,0	403.1	63.1	0,9	4.7	0,0	0.0	0,0	0,0		15.9	
	Triangolo 2	81,6	3,0	399,8	63,0	0,9	4,6	0.0		0,0	0,0		16,1	
FLQi021	Fab. C - Lato 3	31,0	-,0	,0	,0	-,0	.,0	-,0	,0	2,0	2,0		, .	
/	Triangolo 1	83,2	3,0	389,1	62,8	0,9	4,7	0,0	0,0	0,0	0,0		17,9	
	Triangolo 2	83,2	3,0	371,8	62,4	0,8	4,6	0.0		0,0	0,0		18,4	
FLQi023	Fab. C - Lato 4	30,2	-,0	2,0	, .	-,0	.,•	-,0	-,0	2,0	2,0		, .	
	Triangolo 1	82,1	3,0	351,8	61,9	8,0	4,6	0,0	0,0	0,0	0,0		17,8	
	Triangolo 2	82,1	3.0		61,8	0.8	4.6	0.0		0.0	0.0		18,0	

Tabella 3: Emissioni apparecchiature interne – periodo diurno e notturno - Ricettore 2

Calcolo del singolo punto	Punto ricevitore: R3		Variante
			emissione: Giorno
	X = 794,22 $Y =$	549,16	Z = 1,50
	Variante: Variante 0		

Tipo elem.	Sorgente puntiforme(ISO 9613)												
Previsione r	rumore secondo ISO 9613								LfT	= Lw + D	c - Adiv -	Aatm - A	Agr - Afol -	- Ahous -
													Aba	ar - Cmet
Elemento	Etichetta	Lw	Dc	Distanz	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT tot
				а			-							
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)				
EZQi001	Gruppo Elettrogeno	65,0	3,0	466,2	64,4	1,0	4,7	0,0	0,0	0,0	0,0		-2,1	
	•													-2,1

Tipo elem.	Sorgente areifo	rme (ISO 9613)												
Previsione	rumore secondo ISO 9613								LfT	= Lw + D	c - Adiv -	Aatm - A	- Agr - Afol مم	- Ahous ar - Cme
Elemento	Etichetta	Lw	Dc	Distanz a	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT to
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)				
FLQi001	Fab. A - lato 1													
	Triangolo 1	77,1	3,0	456,6	64,2	1,0	4,7	0,0	0,0	0,0	0,0		10,2	
	Triangolo 2	77,1	3,0	490,9	64,8	1,1	4,6	0,0	0,0	0,0	0,0		9,6	
FLQi003	Fab. A - Lato 2													
	Triangolo 1	71,5	3,0	452,0	64,1	1,0	4,7	0,0	0,0	0,0	0,0		4,7	
	Triangolo 2	71,5	3,0	439,3	63,8	1,0	4,6	0,0	0,0	0,0	0,0		5,0	
FLQi005	Fab. A - Lato 3													
	Triangolo 1	74,3	3,0	523,1	65,4	1,2	4,7	0,0	0,0	0,0	0,0		6,1	
	Triangolo 2	74,3	3,0	494,7	64,9	1,1	4,6	0,0	0,0	0,0	0,0		6,7	
FLQi008	Fab.A - Lato 4													
	Triangolo 1	75,6	3,0	596,4	66,5	1,3	4,7	0,0	0,0	0,0	0,0		6,1	
	Triangolo 2	75,6	3,0	573,7	66,2	1,3	4,7	0,0	0,0	0,0	0,0		6,5	
FLQi009	Fab. A - Lato 5	65,9	3,0	558,8	65,9	1,2	4,8	0,0	0,0	0,0	0,0		-3,0	
FLQi011	Fab.B - Lato 1													
	Triangolo 1	74,4	3,0	188,6	56,5	0,4	4,5	0,0	0,0	0,0	0,0		16,0	
	Triangolo 2	74,5	3,0	190,9	56,6	0,4	4,3	0,0	0,0	0,0	0,0		16,1	
FLQi012	Fab Lato 3	·												
	Triangolo 1	78,5	3,0	294,2	60,4	0,7	4,6	0,0	0,0	0,0	0,0		15,9	
	Triangolo 2	78,5	3,0	287,6	60,2	0,6	4,5	0,0	0,0	0,0	0,0		16,2	
FLQi014	Fab. B - Lato 2													
	Triangolo 1	79,3	3,0	251,8	59,0	0,6	4,6	0,0	0,0	0,0	0,0		18,1	
	Triangolo 2	79,3	3,0	220,9	57,9	0,5	4,4	0,0	0,0	0,0	0,0		19,5	
FLQi015	Fab. B - Lato 4													
	Triangolo 1	75,3	3,0	234,2	58,4	0,5	4,6	0,0	0,0	0,0	0,0		14,8	
	Triangolo 2	75,3	3,0	269,6	59,6	0,6	4,5	0,0	0,0	0,0	0,0		13,6	
FLQi016	Fab. C - Lato 1													
	Triangolo 1	83,1	3,0	144,4	54,2	0,3	4,4	0,0	0,0	0,0	0,0		27,2	
	Triangolo 2	83,1	3,0	145,9	54,3	0,3	4,2	0,0	0,0	0,0	0,0		27,3	
FLQi018	Fab. C - Lato 2	·												
	Triangolo 1	81,6	3,0	158,7	55,0	0,4	4,4	0,0	0,0	0,0	0,0		24,8	
	Triangolo 2	81,6	3,0	152,8	54,7	0,3	4,2	0,0	0,0	0,0	0,0		25,4	
FLQi021	Fab. C - Lato 3													
	Triangolo 1	83,2	3,0	164,0	55,3	0,4	4,4	0,0	0,0	0,0	0,0		26,1	
	Triangolo 2	83,2	3,0	165,8	55,4	0,4	4,3	0,0	0,0	0,0	0,0		26,2	
FLQi023	Fab, C - Lato 4		,-		Ť	,		,-		, ,	, ,		1 '	
	Triangolo 1	82,1	3,0	164,2	55,3	0,4	4,4	0,0	0,0	0,0	0,0		25,0	
	Triangolo 2	82,1	3.0		54,9	0.4	4.2	0.0		0.0	0.0		25,6	

Tabella 4: Emissioni apparecchiature interne – periodo diurno e notturno - Ricettore 3

Calcolo del singolo punto

Punto ricevitore: R4

Variante
emissione: Giorno

X = 1061,75 Y = 557,52 Z = 1,50

Variante: Variante 0

Tipo elem.	Sorgente puntiforme	(ISO 9613)												
Previsione	rumore secondo ISO 9613								LfT	= Lw + D	c - Adiv -	Aatm - A	Agr - Afol -	- Ahous -
													Aba	ar - Cmet
Elemento	Etichetta	Lw	Dc	Distanz	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT tot
				а			-							
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)				
EZQi001	Gruppo Elettrogeno	65,0	3,0	683,8	67,7	1,5	4,7	0,0	0,0	0,0	0,0		-5,9	
					•	•								-5.9

Tipo elem.	Sorgente areifo rumore secondo ISO 9613	rme (ISO 9613)							1.57	-1	ندام ۸ مان	A a two	Λ Λ.Ε!	Λ h a
Previsione	rumore secondo ISO 9613								LTI	= LW + L	c - Adiv -	Aatm - /	- Agr - Afol Aba	- Anous ar - Cme
Elemento	Etichetta	Lw	Dc	Distanz a	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT to
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)
FLQi001	Fab. A - lato 1													
	Triangolo 1	77,1	3,0	654,4	67,3	1,5	4,7	0,0		0,0	0,0		6,6	
	Triangolo 2	77,1	3,0	699,8	67,9	1,6	4,7	0,0	0,0	0,0	0,0		6,0	
FLQi003	Fab. A - Lato 2													
	Triangolo 1	71,5	3,0	628,5	67,0	1,4	4,7	0,0	0,0	0,0	0,0		1,4	
	Triangolo 2	71,5	3,0	619,5	66,8	1,4	4,7	0,0	0,0	0,0	0,0		1,6	
FLQi005	Fab. A - Lato 3													
	Triangolo 1	74,3	3,0	693,6	67,8	1,5	4,7	0,0	0,0	0,0	0,0		3,2	
	Triangolo 2	74,3	3,0	666,1	67,5	1,5	4,7	0,0	0,0	0,0	0,0		3,7	
FLQi008	Fab.A - Lato 4													
	Triangolo 1	75,6	3,0	783,2	68,9	1,7	4,7	0,0	0,0	0,0	0,0		3,3	
	Triangolo 2	75,6	3,0	752,4	68,5	1,7	4,7	0,0	0,0	0,0	0,0		3,7	
FLQi009	Fab. A - Lato 5	65,9	3,0	768,4	68,7	1,7	4,8	0,0	0,0	0,0	0,0		-6,2	
FLQi011	Fab.B - Lato 1													
	Triangolo 1	74,4	3,0	327,3	61,3	0,7	4,6	0,0	0,0	0,0	0,0		10,8	
	Triangolo 2	74,5	3,0	351,9	61,9	0,8	4,6	0,0	0,0	0,0	0,0		10,2	
FLQi012	Fab Lato 3								•					
	Triangolo 1	78,5	3,0	448,1	64,0	1,0	4,7	0,0	0,0	0,0	0,0		11,8	
	Triangolo 2	78,5	3,0	425,4	63,6	0,9	4,6	0,0	0,0	0,0	0,0		12,4	
FLQi014	Fab. B - Lato 2	·							•					
	Triangolo 1	79,3	3,0	369,9	62,4	0,8	4,6	0,0	0,0	0,0	0,0		14,4	
	Triangolo 2	79,3	3,0	336,5	61,5	0,8	4,5	0,0	0,0	0,0	0,0		15,4	
FLQi015	Fab. B - Lato 4													
	Triangolo 1	75,3	3,0	409,2	63,2	0,9	4,7	0,0	0,0	0,0	0,0		9,5	
	Triangolo 2	75,3	3,0	440,7	63,9	1,0	4,6	0,0	0,0	0,0	0,0		8,8	
FLQi016	Fab. C - Lato 1													
	Triangolo 1	83,1	3,0	300,4	60,5	0,7	4,6	0,0	0,0	0,0	0,0		20,2	
	Triangolo 2	83,1	3,0	319,6	61,1	0,7	4,5	0,0	0,0	0,0	0,0		19,7	
FLQi018	Fab. C - Lato 2	·							•					
	Triangolo 1	81,6	3,0	288,3	60,2	0,6	4,6	0,0	0,0	0,0	0,0		19,1	
	Triangolo 2	81,6	3,0	285,1	60,1	0,6	4,5	0,0	0,0	0,0	0,0		19,4	
FLQi021	Fab. C - Lato 3		,-	[,	, ,		,-		, ,			'	
	Triangolo 1	83,2	3,0	310,9	60,8	0,7	4,6	0,0	0,0	0,0	0,0		20,1	
	Triangolo 2	83,2	3,0	330,3	61,4	0,7	4,5	0,0	0,0	0,0	0,0		19,6	
FLQi023	Fab, C - Lato 4		- , -			- ,	,-	- , -		- , -	.,.			
	Triangolo 1	82,1	3,0	346,4	61,8	8,0	4,6	0,0	0,0	0,0	0,0		17,9	
	Triangolo 2	82,1	3.0		61,7	0.8	4,5	0.0		0.0	0.0		18,1	

Tabella 5: Emissioni apparecchiature interne – periodo diurno e notturno- Ricettore 4

9.4.2 Emissioni diurne e notturne fonti esterne ai capannoni

Calcolo del singolo punto	Punto ricevitore: R1		Variante
			emissione: Giorno
	X = 501,61	Y = 472,50	Z = 1,50
	Variante: Variante 0		·

Tipo elem.	Sorgente puntiforme(I	SO 9613)												
Previsione	rumore secondo ISO 9613								LfT	= Lw + D	c - Adiv -	Aatm - A	Agr - Afol -	- Ahous -
													Aba	ar - Cmet
Elemento	Etichetta	Lw	Dc	Distanz	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT tot
				а			-							
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)				
EZQi001	Gruppo Elettrogeno	65,0	3,0	261,1	59,3	0,6	4,6	0,0	0,0	0,0	0,0		3,5	
EZQi002	Lavareti 1	85,0	3,0	333,0	61,4	0,7	4,6	0,0	0,0	8,2	0,0		13,0	
EZQi003	Lavareti 2	85,0	3,0	334,3	61,5	0,7	4,6	0,0	0,0	9,5	0,0		11,7	
EZQi004	Gruppi frigo	100,0	3,0	259,6	59,3	0,6	4,6	0,0	0,0	0,0	0,0		38,6	
	Gruppi frigo /	99,0	3,0	265,5	59,5	0,6	4,6	0,0	0,0	0,0	0,0		37,3	
	HAUS004(4)													
EZQi005	Gruppo elet. 1	75,0	3,0	265,9	59,5	0,6	4,6	0,0	0,0	0,0	0,0		13,3	
	Gruppo elet. 1 /	74,0	3,0	277,6	59,9	0,6	4,6	0,0	0,0	0,0	0,0		11,9	
	HAUS002(4)													
EZQi006	Gruppo elet. 2	75,0	3,0	252,4	59,0	0,6	4,6	0,0	0,0	0,0	0,0		13,8	
	Gruppo elet. 2 /	74,0	3,0	287,1	60,2	0,6	4,6	0,0	0,0	0,0	0,0		11,6	
	HAUS002(4)													
EZQi007	Gruppo elet. 3	75,0	3,0	318,4	61,1	0,7	4,6	0,0	0,0	1,3	0,0		10,3	
EZQi008	Ossigenatore	75,0	3,0	327,7	61,3	0,7	4,6	0,0	0,0	0,7	0,0		10,6	
		•												41,0

Tabella 6: Emissioni apparecchiature esterne– periodo diurno e notturno - Ricettore 1

Calcolo del singolo punto	Punto ricevitore: R2		Variante
			emissione: Giorno
	X = 480,71	Y = 603,52	Z = 1,50
	Variante: Variante 0		

Tipo elem.	Sorgente puntiforme(ISC	9613)												
Previsione i	rumore secondo ISO 9613	,							LfT	= Lw + D	c - Adiv -	Aatm - A	Agr - Afol -	
													Aba	ar - Cmet
Elemento	Etichetta	Lw	Dc	Distanz	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT tot
				а			-							
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)				
EZQi001	Gruppo Elettrogeno	65,0	3,0	390,4	62,8	0,9	4,7	0,0	0,0	0,0	0,0		-0,4	
EZQi002	Lavareti 1	85,0	3,0	401,3	63,1	0,9	4,6	0,0	0,0	5,6	0,0		13,8	
EZQi003	Lavareti 2	85,0	3,0	404,3	63,1	0,9	4,6	0,0	0,0	8,5	0,0		10,9	
EZQi004	Gruppi frigo	100,0	3,0	390,5	62,8	0,9	4,7	0,0	0,0	0,0	0,0		34,7	
	Gruppi frigo /	99,0	3,0	396,4	63,0	0,9	4,7	0,0	0,0	0,0	0,0		33,5	
	HAUS004(4)													
EZQi005	Gruppo elet. 1	75,0	3,0	370,7	62,4	0,8	4,7	0,0	0,0	0,0	0,0		10,2	
	Gruppo elet. 1 /	74,0	3,0	381,6	62,6	0,9	4,7	0,0	0,0	0,0	0,0		8,9	
	HAUS002(4)													
EZQi006	Gruppo elet. 2	75,0	3,0	352,8	61,9	0,8	4,6	0,0	0,0	0,0	0,0		10,6	
EZQi007	Gruppo elet. 3	75,0	3,0	449,8	64,1	1,0	4,7	0,0	0,0	0,5	0,0		7,7	
EZQi008	Ossigenatore	75,0	3,0	459,3	64,2	1,0	4,7	0,0	0,0	0,2	0,0		7,8	
	·													37.2

Tabella 7: Emissioni apparecchiature esterne – periodo diurno e notturno - Ricettore 2

Calcolo del singolo punto	Punto ricevitore: R3		Variante
			emissione: Giorno
	X = 794,22	Y = 549,16	Z = 1,50
	Variante: Variante 0		

Tipo elem.	Sorgente puntiforme(IS	O 9613)												
Previsione	rumore secondo ISO 9613	•							LfT	= Lw + D	c - Adiv -	Aatm - A	Agr - Afol	- Ahous -
													Aba	ar - Cmet
Elemento	Etichetta	Lw	Dc	Distanz	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT tot
				а			Ŭ							
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)				
EZQi001	Gruppo Elettrogeno	65,0	3,0	466,2	64,4	1,0	4,7	0,0	0,0	0,0	0,0		-2,1	, ,
EZQi002	Lavareti 1	85,0	3,0	152,5	54,7	0,3	4,4	0,0	0,0	0,0	0,0		28,6	
EZQi003	Lavareti 2	85,0	3,0	158,3	55,0	0,4	4,4	0,0	0,0	0,0	0,0		28,3	
EZQi004	Gruppi frigo	100,0	3,0	377,1	62,5	0,8	4,7	0,0	0,0	0,0	0,0		35,0	
	Gruppi frigo /	99,0	3,0	382,1	62,6	0,9	4,7	0,0	0,0	0,0	0,0		33,8	
	HAUS004(4)													
EZQi005	Gruppo elet. 1	75,0	3,0	241,2	58,6	0,5	4,6	0,0	0,0	0,0	0,0		14,3	
EZQi006	Gruppo elet. 2	75,0	3,0	220,3	57,9	0,5	4,5	0,0	0,0	0,0	0,0		15,1	
EZQi007	Gruppo elet. 3	75,0	3,0	422,9	63,5	0,9	4,7	0,0	0,0	0,0	0,0		8,9	
EZQi008	Ossigenatore	75,0	3,0	434,2	63,7	1,0	4,7	0,0	0,0	0,0	0,0		8,6	
														38,5

Tabella 8: Emissioni apparecchiature esterne – periodo diurno e notturno - Ricettore 3

Tipo elem.	Sorgente puntiforme	(ISO 9613)												
Previsione	rumore secondo ISO 9613	•							LfT	= Lw + D	c - Adiv -	Aatm - A	Agr - Afol	- Ahous -
													Aba	ar - Cmet
Elemento	Etichetta	Lw	Dc	Distanz	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT tot
				а			-							
		/ dB(A)	/ dB	/ m	/ dB	/ dB	/ dB	/ dB	/ dB(A)	/ dB(A)				
EZQi001	Gruppo Elettrogeno	65,0	3,0	683,8	67,7	1,5	4,7	0,0	0,0	0,0	0,0		-6,0	
EZQi002	Lavareti 1	85,0	3,0	283,0	60,0	0,6	4,6	0,0	0,0	0,0	0,0		22,8	
	Lavareti 1 / HAUS001(3)	84,0	3,0	289,5	60,2	0,6	4,6	0,0	0,0	0,0	0,0		21,5	
EZQi003	Lavareti 2	85,0	3,0	286,3	60,1	0,6	4,6	0,0	0,0	0,0	0,0		22,7	
	Lavareti 2 / HAUS001(3)	84,0	3,0	292,3	60,3	0,7	4,6	0,0	0,0	0,0	0,0		21,4	
EZQi004	Gruppi frigo	100,0	3,0	571,4	66,1	1,3	4,7	0,0	0,0	0,1	0,0		30,8	
EZQi005	Gruppo elet. 1	75,0	3,0	416,8	63,4	0,9	4,7	0,0	0,0	5,7	0,0		3,3	
EZQi006	Gruppo elet. 2	75,0	3,0	405,5	63,2	0,9	4,7	0,0	0,0	0,5	0,0		8,8	
EZQi007	Gruppo elet. 3	75,0	3,0	598,6	66,5	1,3	4,7	0,0	0,0	0,1	0,0		5,4	
EZQi008	Ossigenatore	75,0	3,0	608,3	66,7	1,4	4,7	0,0	0,0	0,1	0,0		5,2	
									•					32.7

Tabella 9: Emissioni apparecchiature esterne – periodo diurno e notturno - Ricettore 4

9.4.3 Emissioni traffico veicolare indotto

Le tabelle che seguono, riportano i valori di emissione acustica generati dal traffico veicolare indotto sui ricettori. I calcoli sono stati sviluppati in base alla norma DIN e considerando un flusso pari a 10 veicoli/ora, con una velocità imposta di 50 km/h.

Si rammenta che tale fonte è attiva solamente nel periodo diurno:

Calcolo del singolo punto	Punto ricevitore: R1		Variante
			emissione: Giorno
	X = 501,61	Y = 472,50	Z = 1,50
	Variante: Variante 0		

Tipo elem.	S	trada	(DIN 18	005)								
Previsione s	econdo DIN 180	105									Lr = (Lw + LK) - Ls	- Lz - Lg
Elemento	Etichetta			ξ	Lw+LK	Distanza	Ls	Z	Lz	Lg	Lr	Lr tot
				/ m	/ dB(A)	/ m	/ dB	/ m	/ dB	/ dB	/ dB(A)	/ dB(A)
STRa001	Traffico Geode	tica										
	sezione 1											
	Parte 1			3,55	68,5	495,7	67,5	0,000	0,0	0,0		
	Parte	1	/	3,55	67,5	1022,3	76,3	0,000	0,0	0,0	-8,8	
	HAUS002(4)											
	Parte 2			90,21	82,2	411,7	65,4	0,000	0,0	0,0	16,9	
	Parte	2	/	90,21	81,2	942,2	75,3	0,000	0,0	0,0	5,9	
	HAUS002(4)											
	Parte 3			230,37	80,6	279,4	60,9	0,000	0,0	0,0	19,7	
	Parte	3	/	230,37	79,6	815,3	73,5	0,000	0,0	0,0	6,1	
	HAUS002(4)											
	Parte `	3	/	230,37	63,2	731,4	72,2	0,000	0,0	0,0	-9,0	
	HAUS003(1)											
	Parte 4			327,99	79,1	193,8	56,8	0,000	0,0	0,0	22,3	
	Parte	4	/	327,99	69,4	760,1	72,6	0,000	0,0	0,0	-3,2	.
	HAUS002(4)											
	Parte `	4	/	327,99	78,1	721,9	72,0	0,000	0,0	0,0	6,1	
	HAUS003(1)							·				

	Parte 5 Parte	5	/	399,71 399,71	77,9 76,9	141,3 711,1	53,3 71,8	0,000 0,000	0,0 0,0	0,0 0,0	24,6 5,1	
	HAUS003(1) Parte 6 Parte	6	/	458,70 458,70	77,5 76,4	114,8 707,6	51,1 71,8	0,000 0,000	0,0 0,0	0,0 0,0	26,4 4,7	l
	HAUS003(1) Parte 7 Parte	7	/	514,41 514,41	77,5 76,4	114,8 708,8	51,1 71,8	0,000 0,000	0,0 0,0	0,0 0,0	26,4 4,6	
	HAUS003(1) Parte 8 Parte	8	/	573,41 573,41	77,9 76,9	141,3 714,8	53,3 71,9	0,000	0,0 0,0	0,0 0,0	24,6 5,0	l
	HAUS003(1) Parte 9 Parte	9	,	645,13 645,13	79,1 75,5	193,8 724,4	56,8 72,1	0,000 0,025	0,0	0,0	22,3 3,4	l
	HAUS003(1) Parte	9	,	645,13	77,6	632,5	70,4	0,000	0,0	0,0	7,2	İ
	HAUS004(4) Parte 10 Parte	10	/	742,74 742,74	80,6 74,1	279,4 647,4	60,9 70,7	0,000 0,000	0,0 0,0	0,0 0,0	19,7 3,4	l
	Parte 11 Parte 12 Parte 13 sezione 2			882,91 1089,08 1213,77	82,2 83,9 65,1	411,7 612,7 735,7	65,4 70,0 72,2	0,000 0,000 0,000	0,0 0,0 0,0	0,0 0,0 0,0	16,9 13,9 -7,1	
	Parte 1 Parte 2 Parte 3 Parte 4			1,63 126,31 332,49 472,65	65,1 83,9 82,2 80,6	735,7 612,7 411,7 279,4	72,2 70,0 65,4 60,9	0,000 0,000 0,000 0,000	0,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0	-7,1 13,9 16,9 19,7	
	Parte HAUS004(4) Parte 5	4	/	472,65 570,27	74,1 79,1	647,4 193,8	70,7 56,8	0,000	0,0	0,0	3,4 22,3	1
	Parte HAUS003(1) Parte	5 5	1	570,27 570,27	75,5 77,6	724,4 632,5	72,1 70,4	0,025	0,0	0,0	3,4 7,2	l
	HAUS004(4) Parte 6			641,98	77,9	141,3	53,3	0,000	0,0	0,0	24,6	l
	Parte HAUS003(1) Parte 7	6	,	641,98 700,98	76,9 77,5	714,8	71,9 51,1	0,000	0,0	0,0	5,0 26,4	l
	Parte HAUS003(1) Parte 8	7	,	700,98 756,69	76,4 77,5	708,8	71,8 51,1	0,000	0,0	0,0	4,6 26,4	l
	Parte HAUS003(1) Parte 9	8	/	756,69 815,69	76,4 77,9	707,6 141,3	71,8 53,3	0,000	0,0	0,0	4,7 24,6	l
	Parte HAUS003(1) Parte 10	9	/	815,69 887,40	76,9 79,1	711,1 193,8	71,8 56,8	0,000	0,0	0,0	5,1 22,3	l
	Parte HAUS002(4) Parte	10 10	1	887,40 887,40	69,4 78,1	760,1 721,9	72,6 72,0	0,000	0,0	0,0	-3,2 6,1	l
	HAUS003(1) Parte 11 Parte	11	/	985,02 985,02	80,6 79,6	279,4 815,3	60,9 73,5	0,000	0,0 0,0	0,0 0,0	19,7 6,1	l
	HAUS002(4) Parte HAUS003(1)	11	/	985,02	63,2	731,4	72,2	0,000	0,0	0,0	-9,0	l
	Parte 12 Parte HAUS002(4)	12	/	1125,18 1125,18	82,2 81,2	411,7 942,2	65,4 75,3	0,000 0,000	0,0 0,0	0,0 0,0	16,9 5,9	l
075 004	Parte 13 Parte HAUS002(4)	13	/	1211,85 1211,85	68,5 67,5	495,7 1022,3	67,5 76,3	0,000 0,000	0,0 0,0	0,0 0,0	1,0 -8,8	
STRa004	Traffico su Vig sezione 1 Parte 1			139,59	86,2	558,9	69,0	0,000	0,0	0,0	17,3	İ
	Parte HAUS001(4) Parte	1	1	139,59 139,59	78,0 81,2	594,2 610,6	69,7 70,0	0,000	0,0	0,0	8,3 11,2	l
	HAUS002(3) Parte 2 Parte 3			292,16 307,20	75,9 67,9	498,8 495,1	67,6 67,5	0,079 0,082	2,3 2,6	0,0 0,0	6,0 -2,3	Ī
	Parte 4 Parte 5 Parte 6 Parte 7			325,06 342,75 370,79 405,86	76,8 67,5 79,0 74,3	491,2 487,9 484,0 481,4	67,4 67,3 67,2 67,2	0,074 0,000 0,090 0,093	2,0 0,0 3,2 3,6	0,0 0,0 0,0 0,0	7,4 0,2 8,5 3,4	
	sezione 2 Parte 1 Parte 2 Parte 3 Parte 4 Parte 5 Parte 6			8,91 43,99 72,02 89,71 107,58 122,61	74,3 79,0 67,5 76,8 67,9 75,9	481,4 484,0 487,9 491,2 495,1 498,8	67,2 67,2 67,3 67,4 67,5 67,6	0,093 0,090 0,000 0,074 0,082 0,079	3,6 3,2 0,0 2,0 2,6 2,3	0,0 0,0 0,0 0,0 0,0 0,0	3,4 8,5 0,2 7,4 -2,3 6,0	
	Parte 7 Parte HAUS001(4)	7	/	275,19 275,19	86,2 78,0	558,9 594,2	69,0 69,7	0,000 0,000	0,0	0,0 0,0	17,3 8,3	
	Parte HAUS002(3)	7	/	275,19	81,2	610,6	70,0	0,000	0,0	0,0	11,2	36,5

Tabella 10: Emissioni traffico veicolare indotto – periodo diurno – Ricettore 1

Calcolo del singolo punto

Punto ricevitore: R2

Variante emissione: Giorno

X = 480,71
Variante: Variante 0

Y = 603,52
Z = 1,50

Tipo elem.	Stra	ida (DIN 1	8005)								
Previsione s	econdo DIN 18005			117	Diets	1 1		1=	1	Lr = (Lw + LK) - Ls	
Elemento	Etichetta		ξ / m	Lw+LK / dB(A)	Distanza / m	Ls / dB	z / m	Lz / dB	Lg / dB	Lr / dB(A)	Lr tot / dB(A)
STRa001	Traffico Geodetic sezione 1	а									
	Parte 1 Parte 2		8,53 93,12	72,3 81,8	464,7 380,2	66,8 64,4	0,000	0,0 0,0	0,0	5,6 17,4	
	Parte 3 Parte 4		219,96 304,66	80,1 78,3	253,6 169,3	59,8 55,3	0,000	0,0	0,0	20,3 23,0	3
	Parte 4	1 /	304,66	61,6	846,2	74,0	0,000	0,0	0,0	-12,3	
	Parte 5	- ,	361,34	76,6	113,3	50,9	0,000	0,0	0,0	25,7	
	HAUS003(1)	5 /	361,34	75,6	843,4	73,9	0,000	0,0	0,0	1,7	
	Parte 6 Parte 6 HAUS003(1)	6 /	399,47 399,47	74,9 73,9	76,1 840,2	46,7 73,9	0,000 0,000	0,0 0,0	0,0 0,0	28,1 0,0	
	Parte 7 Parte HAUS003(1)	7 /	425,38 425,38	73,2 72,2	51,6 839,0	42,8 73,8	0,000 0,000	0,0 0,0	0,0 0,0	30,5 -1,6	
	Parte 8 Parte 8	3 /	443,43 443,43	71,8 70,7	35,8 838,6	39,1 73,8	0,000 0,000	0,0 0,0	0,0 0,0	32,7 -3,1	
		9 /	456,69 456,69	70,6 69,6	26,1 838,6	36,0 73,8	0,000 0,000	0,0 0,0	0,0 0,0	34,6 -4,2	
	HAUS003(1) Parte 10 Parte 1	0 /	467,60 467,60	70,1 69,1	21,2 838,8	34,1 73,8	0,000 0,000	0,0 0,0	0,0 0,0	36,1 -4,7	
	HAUS003(1) Parte 11 Parte 1		477,90 477,90	70,1 69,1	21,2 839,0	34,1 73,8	0,000	0,0	0,0	36,1 -4,7	ı
	HAUS003(1) Parte 12		488,81	70,6	26,1	36,0	0,000	0,0	0,0	34,6	3
	Parte 1 HAUS003(1) Parte 13	2 /	488,81 502,07	69,6 71,8	839,4 35,8	73,9 39,1	0,000	0,0	0,0	-4,3 32,7	
	Parte 1 HAUS003(1) Parte 14	3 /	502,07 520,12	70,7 73,2	840,1 51,6	73,9 42,8	0,000	0,0	0,0	-3,1 30,5	
	Parte 1 HAUS003(1)	4 /	520,12	72,2	841,4	73,9	0,000	0,0	0,0	-1,7	7
	Parte 15 Parte 1 HAUS003(1)	5 /	546,04 546,04	74,9 73,9	76,1 843,9	46,7 73,9	0,000	0,0 0,0	0,0 0,0	28,1 -0,1	ı
	Parte 16 Parte 1 HAUS003(1)	6 /	584,16 584,16	76,6 75,6	113,3 849,1	50,9 74,0	0,000 0,000	0,0 0,0	0,0 0,0	25,7 1,6	
		6 /	584,16	68,4	754,7	72,6	0,000	0,0	0,0	-4,2	2
	Parte 17 Parte 1 HAUS003(1)	7 /	640,84 640,84	78,3 73,8	169,3 855,8	55,3 74,1	0,000 0,023	0,0 0,0	0,0 0,0	23,0 -0,3	
	Parte 1 HAUS004(4)	7 /	640,84	77,3	761,7	72,7	0,000	0,0	0,0	4,6	
	Parte 18 Parte 1 HAUS004(4)	8 /	725,55 725,55	80,1 67,7	253,6 770,4	59,8 72,8	0,000 0,000	0,0 0,0	0,0 0,0	20,3 -5,1	
	Parte 19 Parte 20 Parte 2	0 /	852,38 1042,49 1042,49	81,8 83,6 79,5	380,2 570,1 701,8	64,4 69,2 71,7	0,000 0,000 0,000	0,0 0,0 0,0	0,0 0,0 0,0	17,4 14,4 7,8	1
	HAUS001(4) Parte 2		1042,49	81,3	780,5	73,0	0,020	0,0	0,0	8,3	
	HAUS002(3) Parte 21		1185,96	77,7	713,5	71,9	0,000	0,0	0,0	5,8	3
	sezione 2 Parte 1 Parte 2		29,43 172,91	77,7 83,6	713,5 570,1	71,9 69,2	0,000 0,000	0,0 0,0	0,0 0,0	5,8 14,4	1
	HAUS001(4) Parte	2 / 2 /	172,91 172,91	79,5 81,3	701,8 780,5	71,7 73,0	0,000	0,0	0,0	7,8	
	HAUS002(3) Parte 3 Parte 4		363,01 489,85	81,8 80,1	380,2 253,6	64,4 59,8	0,000	0,0	0,0	17,4 20,3	1
	Parte 4 HAUS004(4)	1 /	489,85	67,7	770,4	72,8	0,000	0,0	0,0	-5,1	ı
	Parte 5 Parte 5 HAUS003(1)		574,55 574,55	78,3 73,8	169,3 855,8	55,3 74,1	0,000 0,023	0,0 0,0	0,0 0,0	23,0 -0,3	3
	Parte S HAUS004(4)	5 /	574,55 631.24		761,7	72,7	0,000	0,0	0,0	4,6	
	Parte 6 Parte 6 HAUS003(1)		631,24		113,3 849,1	50,9 74,0	0,000 0,000	0,0 0,0	0,0 0,0	25,7 1,6	5
	Parte (HAUS004(4) Parte 7	6 /	631,24 669,36	68,4 74,9	754,7 76,1	72,6 46,7	0,000	0,0	0,0	-4,2 28,1	
		7 /	669,36		843,9	73,9	0,000	0,0	0,0	-0,1	

	Parte 8 Parte	8	/	695,27 695,27	73,2 72,2	51,6 841,4	42,8 73,9	0,000 0,000	0,0 0,0	0,0 0,0	30,5 -1,7	
	HAUS003(1) Parte 9	•	,	713,32	71,8	35,8	39,1	0,000	0,0	0,0	32,7	
	Parte HAUS003(1) Parte 10	9	/	713,32 726,58	70,7 70,6	840,1 26,1	73,9 36,0	0,000	0,0	0,0	-3,1 34,6	
	Parte HAUS003(1)	10	/	726,58	69,6	839,4	73,9	0,000	0,0	0,0	-4,3	
	Parte 11	11	/	737,49 737,49	70,1 69,1	21,2 839,0	34,1 73,8	0,000 0,000	0,0 0,0	0,0 0,0	36,1 -4,7	
	HAUS003(1) Parte 12 Parte	12	1	747,79 747,79	70,1 69,1	21,2 838,8	34,1 73,8	0,000 0,000	0,0 0,0	0,0 0,0	36,1 -4,7	
	HAUS003(1) Parte 13	12	,	758,70	70,6	26,1	36.0	0,000	0,0	0,0	34,6	
	Parte HAUS003(1)	13	/	758,70	69,6	838,6	73,8	0,000	0,0	0,0	-4,2	
	Parte 14 Parte HAUS003(1)	14	/	771,96 771,96	71,8 70,7	35,8 838,6	39,1 73,8	0,000 0,000	0,0 0,0	0,0 0,0	32,7 -3,1	
	Parte 15 Parte	15	/	790,01 790,01	73,2 72,2	51,6 839,0	42,8 73,8	0,000 0,000	0,0 0,0	0,0 0,0	30,5 -1,6	
	HAUS003(1) Parte 16 Parte	16	1	815,93 815,93	74,9 73,9	76,1 840,2	46,7 73,9	0,000	0,0 0,0	0,0	28,1 0,0	
	HAUS003(1) Parte 17	10	,	854,05	76,6	113,3	50.9	0,000	0,0	0,0	25,7	
	Parte HAUS003(1)	17	/	854,05	75,6	843,4	73,9	0,000	0,0	0,0	1,7	
	Parte 18 Parte HAUS003(1)	18	/	910,74 910,74	78,3 61,6	169,3 846,2	55,3 74,0	0,000 0,000	0,0 0,0	0,0 0,0	23,0 -12,3	
	Parte 19 Parte 20			995,44 1122,27	80,1 81,8	253,6 380,2	59,8 64,4	0,000 0,000	0,0 0,0	0,0 0,0	20,3 17,4	
STRa004	Parte 21 Traffico su Vig	narca		1206,87	72,3	464,7	66,8	0,000	0,0	0,0	5,6	
	sezione 1 Parte 1 Parte	1	/	18,98 18,98	77,6 76,5	637,4 799,9	70,5 73,3	0,000 0,041	0,0 0,0	0,0 0,0	7,0 3,3	
	HAUS002(3) Parte 2 Parte	2	1	178,55 178,55	86,3 65,7	579,7 781,0	69,4 73,0	0,000 0,042	0,0 0,0	0,0 0,0	16,9 -7,3	
	HAUS002(3) Parte 3			326,66	73,5	562,4	69,0	0,000	0,0	0,0	4,5	
	Parte 4 Parte 5 Parte 6			359,41 398,14 413,20	78,8 76,1 66,7	563,8 567,9 570,2	69,1 69,1 69,2	0,077 0,087 0,085	1,6 2,4 2,0	0,0 0,0 0,0	8,1 4,5 -4,5	
	sezione 2 Parte 1 Parte 2			1,57 16,64	66,7 76,1	570,2 567,9	69,2 69,1	0,085 0,087	2,0 2,4	0,0	-4,5 4,5	
	Parte 3 Parte 4			55,36 88,12	78,8 73,5	563,8 562,4	69,1 69,0	0,077	1,6 0,0	0,0	8,1 4,5	
	Parte 5 Parte HAUS002(3)	5	1	236,23 236,23	86,3 65,7	579,7 781,0	69,4 73,0	0,000 0,042	0,0 0,0	0,0 0,0	16,9 -7,3	
	Parte 6 Parte HAUS002(3)	6	1	395,80 395,80	77,6 76,5	637,4 799,9	70,5 73,3	0,000 0,041	0,0 0,0	0,0 0,0	7,0 3,3	

Tabella 11: Emissioni traffico veicolare indotto – periodo diurno – Ricettore 2

Calcolo del singolo punto	Punto ricevitore: R3		Variante
	X = 794.22	Y = 549.16	emissione: Giorno Z = 1,50
	Variante: Variante 0	1 - 349,10	2 - 1,50

Tipo elem.	S	trada	(DIN 18	3005)								
Previsione	secondo DIN 180	005									Lr = (Lw + LK) - Ls	- Lz - Lg
Elemento	Etichetta			ξ	Lw+LK	Distanza	Ls	Z	Lz	Lg	Lr	Lr tot
				/ m	/ dB(A)	/ m	/ dB	/ m	/ dB	/ dB	/ dB(A)	/ dB(A)
STRa001	Traffico Geode	etica										
	sezione 1											
	Parte 1			18,24	75,6	766,3	72,7	0,000	0,0	0,0	2,9	
	Parte	1	/	18,24	74,6	1081,7	77,0	0,000	0,0	0,0	-2,4	
	HAUS003(1)											
	Parte 2			161,31			70,3	0,000	0,0	0,0	13,7	
	Parte	2	/	161,31	83,0	988,4	75,9	0,000	0,0	0,0	7,1	
	HAUS003(1)											
	Parte	2	/	161,31	75,0	847,7	74,0	0,000	0,0	0,0	1,0	
	HAUS004(4)											
	Parte 3			369,57	82,2		65,5	0,000	0,0	0,0	16,7	
	Parte	3	/	369,57	71,6	912,8	74,9	0,020	0,0	0,0	-3,2	
	HAUS003(1)											
	Parte	3	/	369,57	76,5	818,9	73,6	0,000	0,0	0,0	2,9	
	HAUS004(4)											
	Parte 4			508,95			60,9	0,000	0,0	0,0	19,6	
	Parte 5			602,68	78,8		56,4	0,000	0,0	0,0	22,4	
	Parte 6			666,41	77,2	127,0	52,2	0,000	0,0	0,0	25,0	

	Parte	6	1	666,41	66,1	354,9	63,6	0,000	0,0	0,0	2,4	
	HAUS001(4) Parte	6	1	666,41	73,8	442,4	66,2	0,000	0,0	0,0	7,6	
	HAUS002(3) Parte 7 Parte	7	/	710,79 710,79	75,7 74,7	88,1 349,9	48,3 63,5	0,000 0,000	0,0 0,0	0,0 0,0	27,4 11,2	
	HAUS001(4) Parte	7	1	710,79	74,7	436,6	66,0	0,078	2,9	0,0	5,7	
	HAUS002(3) Parte 8			743,39	74,5	64,2	45,0	0,000	0,0	0,0	29,5	
	Parte HAUS001(4)	8	1	743,39	73,5	344,6	63,3	0,000	0,0	0,0	10,2	
	Parte 9 Parte HAUS001(4)	9	1	770,21 770,21	74,0 73,0	52,2 342,5	42,9 63,2	0,000 0,000	0,0 0,0	0,0 0,0	31,2 9,8	
	Parte 10 Parte	10	/	795,54 795,54	74,0 73,0	52,2 342,4	42,9 63,2	0,000 0,000	0,0 0,0	0,0 0,0	31,2 9,8	
	HAUS001(4) Parte 11 Parte	11	/	822,36 822,36	74,5 71,8	64,2 343,9	45,0 63,3	0,000 0,000	0,0 0,0	0,0 0,0	29,5 8,6	
	HAUS001(4) Parte 12 Parte	12	/	854,96 854,96	75,7 69,2	88,1 438,4	48,3 66,1	0,000 0,078	0,0 2,9	0,0 0,0	27,4 0,2	
	HAUS002(3) Parte 13			899,34	77,2	127,0	52,2	0,000	0,0	0,0	25,0	
	Parte 14 Parte 15			963,07 1056,80	78,8 80,5	187,2 278,6	56,4 60,9	0,000	0,0 0,0	0,0	22,4 19,6	
	Parte 16 sezione 2			1164,07	80,1	384,5	64,6	0,000	0,0	0,0	15,6	
	Parte 1 Parte 2			51,32 158,60	80,1 80,5	384,5 278,6	64,6 60,9	0,000	0,0	0,0	15,6 19,6	
	Parte 3 Parte 4			252,33 316,05	78,8 77,2	187,2 127,0	56,4 52,2	0,000	0,0	0,0	22,4 25,0	
	Parte 5 Parte	5	/	360,43 360,43	75,7 69,2	88,1 438,4	48,3 66,1	0,000 0,078	0,0 2,9	0,0 0,0	27,4 0,2	
	HAUS002(3) Parte 6	J	,	393,03	74,5	64,2	45,0	0,000	0,0	0,0	29,5	
	Parte	6	1	393,03	71,8	343,9	63,3	0,000	0,0	0,0	8,6	
	HAUS001(4) Parte 7 Parte	7	/	419,86 419,86	74,0 73,0	52,2 342,4	42,9 63,2	0,000 0,000	0,0 0,0	0,0 0,0	31,2 9,8	
	HAUS001(4) Parte 8 Parte	8	/	445,18 445,18	74,0 73,0	52,2 342,5	42,9 63,2	0,000 0,000	0,0 0,0	0,0 0,0	31,2 9,8	
	HAUS001(4) Parte 9 Parte	9	/	472,00 472,00	74,5 73,5	64,2 344,6	45,0 63,3	0,000 0,000	0,0 0,0	0,0 0,0	29,5 10,2	
	HAUS001(4) Parte 10 Parte	10	/	504,61 504,61	75,7 74,7	88,1 349,9	48,3 63,5	0,000 0,000	0,0 0,0	0,0 0,0	27,4 11,2	
	HAUS001(4) Parte	10	1	504,61	74,7	436,6	66,0	0,078	2,9	0,0	5,7	
	HAUS002(3) Parte 11			548,99	77,2	127,0	52,2	0,000	0,0	0,0	25,0	
	Parte HAUS001(4)	11	/	548,99	66,1	354,9	63,6	0,000	0,0	0,0	2,4	
	Parte HAUS002(3)	11	/	548,99	73,8	442,4	66,2	0,000	0,0	0,0	7,6	
	Parte 12 Parte 13			612,71 706,44	78,8 80,5	187,2 278,6	56,4 60,9	0,000	0,0	0,0	22,4 19,6	
	Parte 14 Parte	14	1	845,82 845,82	82,2 71,6	416,4 912,8	65,5 74,9	0,000 0,020	0,0 0,0	0,0 0,0	16,7 -3,2	
	HAUS003(1) Parte HAUS004(4)	14	/	845,82	76,5	818,9	73,6	0,000	0,0	0,0	2,9	
	Parte 15 Parte	15	,	1054,09 1054,09	84,0 83,0	623,6 988,4	70,3 75,9	0,000	0,0 0,0	0,0 0,0	13,7 7,1	
	HAUS003(1) Parte	15	,	1054,09	75,0	847,7	74,0	0,000	0,0	0,0	1,0	
	HAUS004(4) Parte 16			1197,15	75,6	766,3	72,7	0,000	0,0	0,0	2,9	
STRa004	Parte HAUS003(1) Traffico su Vig	16 marca	/	1197,15	74,6	1081,7	77,0	0,000	0,0	0,0	-2,4	
2.1.0004	sezione 1 Parte 1	04		42,78	81,1	313,6	62,2	0,000	0,0	0,0	18,9	
	Parte 2			150,89	82,9	269,3	60,5	0,000	0,0	0,0	22,5	
	Parte 3 Parte 4 sezione 2			281,53 380,81	82,9 80,1	269,3 308,8	60,5 62,0	0,000 0,000	0,0 0,0	0,0 0,0	22,5 18,1	
	Parte 1 Parte 2			33,96 133,25	80,1 82,9	308,8 269,3	62,0 60,5	0,000	0,0	0,0 0,0	18,1 22,5	
	Parte 3 Parte 4			263,89 371,99	82,9 81,1	269,3 313,6	60,5 62,2	0,000	0,0	0,0 0,0	22,5 18,9	
	1 alto 4			57 1,53	01,1	010,0	UL,L	0,000	0,0	0,0	10,0	41,7

Tabella 12: Emissioni traffico veicolare indotto – periodo diurno – Ricettore 3

 Calcolo del singolo punto
 Punto ricevitore: R4
 Variante emissione: Giorno X = 1061,75 Y = 557,52 Z = 1,50

 Variante: Variante 0
 Variante: Variante 0

	secondo DIN 180	trada (05	DII 1	•							Lr = (Lw + LK) - Ls	
Elemento	Etichetta			ξ / m	Lw+LK / dB(A)	Distanza / m	Ls / dB	z / m	Lz / dB	Lg / dB	Lr / dB(A)	Lr tot / dB(A)
STRa001	Traffico Geode sezione 1	tica										
	Parte 1			107,32	83,3	944,9	75,3	0,000	0,0	0,0	8,0)
	Parte	1	/	107,32	71,8	1292,3	79,2	0,031	0,0	0,0	-7,4	÷
	HAUS003(1) Parte 2			354,42	84,5	698,3	71,6	0,000	0,0	0,0	12,9	,
	Parte	2	/	354,42	80,6	755,0	72,6	0,000	0,0	0,0	8,1	
	HAUS001(4) Parte	2	/	354,42	80,5	758,5	72,6	0,005	0,0	0,0	7,9	,
	HAUS002(3) Parte 3			E07.64	00.7	466.0	66.0	0,000	0,0	0,0	45.0	,
	Parte 3	3	/	587,64 587,64	82,7 73,5	466,3 690,9	66,8 71,5	0,000	0,0	0,0	15,9 1,9	
	HAUS002(3) Parte 4			743,72	81,0	311,9	62,1	0,000	0,0	0.0	18,8	,
	Parte 5			848,69	79,3	209,6	57,6	0,000	0,0	0,0	21,6	6
	Parte 6 Parte 7			920,04 969,74	77,6 76,2	142,2 98,7	53,4 49,5	0,000	0,0 0,0	0,0 0,0	24,3 26,7	
	Parte 8			1006,25	75,0	71,9	46,1	0,000	0,0	0,0	28,9	9
	Parte 9 Parte 10			1036,29 1064,65	74,5 74,5	58,5 58,5	44,0 44,0	0,000	0,0	0,0 0,0	30,5 30,5	
	Parte 11			1094,68	75,0	71,9	46,1	0,000	0,0	0,0	28,9	
	Parte 12			1131,19	76,2	98,7	49,5	0,000	0,0	0,0	26,7	
	Parte 13 Parte 14			1180,89 1212,66	77,6 67,4	142,2 171,8	53,4 55,4	0,000	0,0 0,0	0,0 0,0	24,3 11,9	
	sezione 2											
	Parte 1 Parte 2			2,73 34,50	67,4 77,6	171,8 142,2	55,4 53,4	0,000	0,0 0,0	0,0 0,0	11,9 24,3	
	Parte 3			84,20	76,2	98,7	49,5	0,000	0,0	0,0	26,7	<i>'</i>
	Parte 4 Parte 5			120,71 150,75	75,0 74,5	71,9 58,5	46,1 44,0	0,000	0,0 0,0	0,0 0,0	28,9 30,5	
	Parte 6			179,11	74,5	58,5	44,0	0,000	0,0	0,0	30,5	5
	Parte 7 Parte 8			209,14 245,65	75,0 76,2	71,9 98,7	46,1 49,5	0,000	0,0	0,0 0,0	28,9 26,7	
	Parte 9			295,35	77,6	142,2	53,4	0,000	0,0	0,0	24,3	
	Parte 10			366,71	79,3	209,6	57,6	0,000	0,0	0,0	21,6	
	Parte 11 Parte 12			471,67 627,75	81,0 82,7	311,9 466,3	62,1 66,8	0,000	0,0 0,0	0,0 0,0	18,8 15,9	
	Parte	12	/	627,75	73,5	690,9	71,5	0,050	0,1	0,0	1,9	
	HAUS002(3) Parte 13			860,97	84,5	698,3	71,6	0,000	0,0	0.0	12,9	,
	Parte	13	/	860,97	80,6	755,0	72,6	0,000	0,0	0,0	8,1	
	HAUS001(4) Parte	13	/	860,97	80,5	758,5	72,6	0,005	0,0	0,0	7,9	,
	HAUS002(3)	.0	,									
	Parte 14 Parte	14	,	1108,08 1108,08	83,3 71,8	944,9 1292,3	75,3 79,2	0,000 0,031	0,0 0,0	0,0 0,0	8,0 -7,4	
	HAUS003(1)	14	,	1100,00	71,0	1292,5	19,2	0,031	0,0	0,0	-7,4	
STRa004	Traffico su Vigr sezione 1	narca										
	Parte 1			12,75	75,8	74,2	46,5	0,000	0,0	0,0	29,4	ı
	Parte 2			36,68	75,3	53,4	43,1	0,000	0,0	0,0	32,2	
	Parte 3 Parte 4			56,44 72,69	74,1 73,6	38,9 31,6	39,9 37,9	0,000	0,0 0,0	0,0 0,0	34,2 35,7	
	Parte 5			88,03	73,6	31,6	37,9	0,000	0,0	0,0	35,7	'
	Parte 6 Parte 7			104,28 124,04	74,1 75,3	38,9 53,4	39,9 43,1	0,000	0,0 0,0	0,0 0,0	34,2 32,2	
	Parte 8			150,93	76,7	76,9	46,8	0,000	0,0	0,0	29,9	9
	Parte 9 Parte 10			189,53 246,33	78,4 80,1	113,4 168,8	50,9 55,2	0,000	0,0 0,0	0,0 0,0	27,4 24,8	
	Parte 11			330,77		252,3	59,7	0,000	0,0	0,0	22,1	
	Parte HAUS001(3)	11	/	330,77	74,4	452,1	66,4	0,000	0,0	0,0	8,0	'
	Parte 12			398,05	77,0	319,2	62,4	0,000	0,0	0,0	14,6	j
	sezione 2 Parte 1			16.70	77,0	319,2	62,4	0,000	0,0	0.0	14.6	,
	Parte 2			16,73 84,00	81,8	252,3	59,7	0,000	0,0	0,0	14,6 22,1	
	Parte	2	/	84,00	74,4	452,1	66,4	0,000	0,0	0,0	8,0	1
	HAUS001(3) Parte 3			168,45	80,1	168,8	55,2	0,000	0,0	0,0	24,8	;
	Parte 4			225,24	78,4	113,4	50,9	0,000	0,0	0,0	27,4	Į.
	Parte 5 Parte 6			263,85 290,74	76,7 75,3	76,9 53,4	46,8 43,1	0,000	0,0 0,0	0,0 0,0	29,9 32,2	
	Parte 7			310,49	74,1	38,9	39,9	0,000	0,0	0,0	34,2	2
	Parte 8 Parte 9			326,74 342,09	73,6 73,6	31,6 31,6	37,9 37,9	0,000	0,0 0,0	0,0 0,0	35,7 35,7	
	Parte 10			358,34	74,1	38,9	39,9	0,000	0,0	0,0	34,2	2
	Parte 11 Parte 12			378,09 402,02	75,3 75,8	53,4 74,2	43,1 46,5	0,000 0,000	0,0	0,0 0,0	32,2 29,4	
	I allC IZ			702,02	13,0	14,2	+0,3	0,000	0,0	0,0	29,4	46,9

Tabella 13: Emissioni traffico veicolare indotto – periodo diurno – Ricettore 4

9.4.4 Sinottico riassuntivo emissioni

La tabella che segue, riassume i <u>livelli di emissione complessivi</u> nei singoli punti ricettori, calcolati come **somma logaritmica** delle signole emissioni stimate nei punti precedenti

	Emissioni singole – Diurno			Emissioni con Periodo D	•
	Apparecchiature	Apparecchiature	Traffico	Emissione totale diurna	Emissione totale diurna
	interne	esterne	veicolare	(somma logaritmica singole emissioni)	(arrotondata)
Ricettore 1	30.4	41.0	36.5	42.6	43.0
Ricettore 2	28.0	37.2	46.6	47,1	47.5
Ricettore 3	35.6	38.5	41.7	44.1	44.5
Ricettore 4	29.3	32.7	46.9	47.1	44.5

Tabella 14: Siottico emissioni impianti periodo diurno

	Emiss	issioni singole - Notturno		Emissioni co Periodo N	•
				Emissione totale	Emissione totale
				Notturna	diurna
				(somma logaritmica	(arrotondata)
				singole emissioni)	
Ricettore 1	30.4	41.0	Inattivo	41.4	41.5
Ricettore 2	28.0	37.2	Inattivo	37,7	38.0
Ricettore 3	35.6	38.5	Inattivo	40.3	40.5
Ricettore 4	29.3	32.7	Inattivo	34.4	34.5

Tabella 15: Siottico emissioni impianti periodo notturno

10 STIMA VALORI IMMISSIONE POST OPERAM

Il livello di immissioni post operam si otterrà sommando al **livello di rumore residuo stimato** (si veda specifico paragrafo del presente documento) , il **livello di emissione**, calcolate nel precedente capitolo, secondo la seguente formula:

$$L_{A,post} = 10log(10^{0.1L_R} + 10^{0.1L_E})$$

Si assumerà, cautelativamente, il valore più elevato di rumore residuo dell'intervallo inicato nel § 5 della presente relazione.

10.1 Immissioni post operam punto 1

Periodo Diurno				
Livello Rumore Residuo Ante Operam Livello Emissione Post Operam Livello Immissione Post Operam				
dB(A) dB(A) dB(A)				
53,5 42,6 53,8				

Periodo Notturno					
Livello Rumore Residuo Ante Operam	Livello Rumore Residuo Ante Operam Livello Emissione Post Operam Livello Immissione Post Operam				
dB(A)	dB(A)	dB(A)			
42,8 41,4 45,2					

10.2 Immis sioni post operam punto 2

Periodo Diurno				
Livello Rumore Residuo Ante Operam Livello Emissione Post Operam Livello Immissione Post Operam				
dB(A) $dB(A)$ $dB(A)$				
44,4 47,1 49,0				

Periodo Notturno				
Livello Rumore Residuo Ante Operam Livello Emissione Post Operam Livello Immissione Post Operam				
dB(A)				
35,4	37,7	39,7		

10.3 Immissioni post operam punto 3

Periodo Diurno					
Livello Rumore Residuo Ante Operam	Livello Rumore Residuo Ante Operam Livello Emissione Post Operam Livello Immissione Post Operam				
dB(A) dB(A) dB(A)					
44,4	46,6				

Periodo Notturno					
Livello Rumore Residuo Ante Operam	Livello Rumore Residuo Ante Operam Livello Emissione Post Operam Livello Immissione Post Operam				
dB(A) $dB(A)$ $dB(A)$					
35,4	40,3	41,5			

10.4 Immissioni post operam punto 4

Periodo Diurno				
Livello Rumore Residuo Ante Operam Livello Emissione Post Operam Livello Immissione Post Operam				
dB(A)	dB(A)	dB(A)		
44,4	47,1	49,0		

Periodo Notturno					
Livello Rumore Residuo Ante Operam	Livello Rumore Residuo Ante Operam Livello Emissione Post Operam Livello Immissione Post Operam				
dB(A) $dB(A)$ $dB(A)$					
35,4	34,4	37,9			

11 CONSIDERAZIONI IN MERITO AI VALORI DI IMMISSIONE DIFFERENZIALI

Non avendo a diposizione misure effettuate all'interno degli ediffici identificati come ricettori, né avendo informazioni in merito alle loro caratteristiche acustiche passive, non è possibile definire in maniera analitica il livello di immissione differenziale.

Sono possibili, tuttavia, alcune valutazioni qualitative, basate sui livelli di rumore residuo misurato e rumore ambientale post operam stimato, nei precedenti capitolo, <u>all'esterno delle abitazioni stesse</u>.

1. In tutti i ricettori livello di rumore ambientale post operam risulta, **nel periodo diurno**, solo di poco più elevato rispetto al livello di rumore residuo. Effettuando la differenza tra i due livelli, essa risulta sempre inferiore a 5 dB(A):

Ricettore	Rumore ambientale post operam	Rumore residuo	Differenza
1	53.8	53.5	0.3
2	49.0	44.4	4.6
3	46.6	44.4	2.2
4	49.0	44.4	4.6

Se il limite differenziale risulta rispettato all'esterno dei fabbricati, lo sarà internamente agli stessi.

2. Nel periodo notturno, la condizione sopra detta non è sempre rispettata, come si nota dalla tabella che segue:

Ricettore	Rumore ambientale post operam	Rumore residuo	Differenza
1	45.2	42.8	2.4
2	39,7	35.4	4.3
3	41.5	35.4	6.1
4	37.9	35.4	2.5

Nel periodo notturno, almeno presso i ricettori 2 e 3, non è possibile inferire il rispetto dei limiti differenziali semplicemente effettuando la valutazione all'esterno dei fabbricati.

Bisogna allora riferirsi ai criteri di applicabilità del criterio differenziale medesimo, ossia esso non è applicabile se:

- il rumore ambientale misurato a finestre aperte è inferiore a 40 dB(A) nel periodo notturno;
- il rumore ambientale misurato a finestre chiuse è inferiore a 25 dB(A) nel periodo notturno.

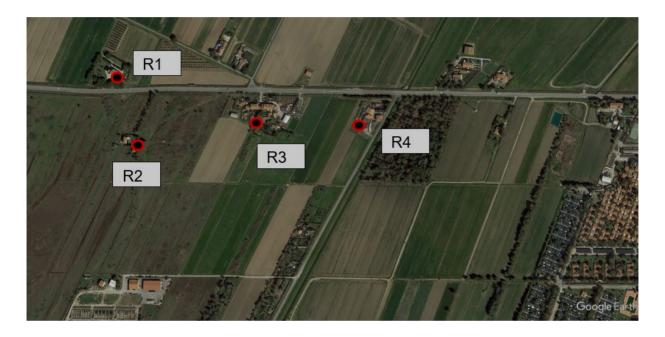
E' facile osservare che la prima condizione è rispettata presso il ricettore 2 e lo è con grande probsbilità anche nel ricettore 3. Infatti, anche in ambienti con ampie finestrature, ancorchè aperte, la parte opaca della facciata garantisce un minimo di isolamento acustico, certamente superiore ad 1.5 dB necessari per garantire il soddisfacimento del criterio.

Per garantire il soddisfacimento del secondo criterio, basti osservare che l'isolamento acustico della facciata, a finestre chiuse, dovrebbe essere di 20 dB, valore assolutamente basso e certamente raggiungibile anche in edifici di scarsissime prestazioni acustiche (si pensi che, per le civili abitazioni, la norma richiede un valore di isolamento almeno di 40 dB).

Quindi, pur non disponendo di dati opportuni per il calcolo analitico dei livelli differenziali di rumore, si può ragionevolmente presupporre il loro rispetto od, al più, la loro non applicabilità, in ragione del livello di rumore ambientale relativamente basso presente nei luoghi.

12 CONSIDERAZIONI IN MERITO ALLE ATTIVITA' DI CANTIERIZZAZIONE

Le emissioni generate nella fase di cantiere, per la realizzazione e l'allestimento dei nuovi capannoni e l'installazione delle nuove apparecchiature, saranno valutati una volta disponibile il progetto definitivo dell'opera ed il relativo cronoprogramma.


In ogni caso, si può afferemare con ragionevole grado di certezza che, date le apparecchiature da utilizzarsi in cantiere (mezzi d'opera per attività di sterro e scavo, gru per il montaggio delle strutture prefabbricate dei capannoni e delle attrezzature), i limiti di emissione ed immissione presso i ricettori saranno rispettati.

Qualora la simulazione da eseguire dovesse dimostrare il contrario, si procederà alla richiesta di opportuna deroga.

13 MONITORAGGIO EMISSIONI ACUSTICHE

Con riferimento ai ricettori individuati, riportati nella figura che segue, si ritiene che la verifica delle emissioni acustiche sia da effettuarsi presso i ricettori n.3 e n.4 in quanto più vicini alle future fonti di emissione e, pertanto, potenzialmente più esposti.

La frequenza di monitoraggio è fissata su base biennale. Saranno effettuate misure di **rumore ambientale** in facciata ai due ricettori indicati. Se possibile, saranno disattivati gli impianti e saranno effettuate anche misurazioni di **rumore residuo**. Qualora la disattivazione degli impianti non fosse possibile, si farà riferimento ai valori di rumore residuo riportati nella valutazione previsionale di impatto acustico (*situazione ante operam*). Si procederà alla ricerca di eventuali componenti impulsive, tonali ed a bassa frequenza.

I dati ottenuti dal monitoraggio saranno utilizzati per i calcoli delle emissioni specifiche da attribuirsi agli impianti a servizio dell'itticoltura e per la valutazione del rispetto dei limiti di emissione ed immissione.

14 CONCLUSIONI

In base alle informazioni progettuali disponibili ed alle conseguenti stime previsionali effettuate, è possibile affermare che le nuove installazioni rumorose, compreso il traffico veicolare indotto, comporteranno il rispetto dei limiti di emissione ed immissione assoluta presso i ricettori.

Robuste considerazioni tecniche fanno presupporre anche il rispetto, o comunque la non applicabilità, del criterio di immissione differenziale.